
By Chris Eidhof, Matt Gallagher, and Florian Kugler

Version 1.0 (May 2018)

© 2018 Kugler und Eidhof GbR

All Rights Reserved

For more books, articles, and videos visit us at https://www.objc.io

Email: mail@objc.io

Twitter: @objcio

About This Book 5

1 Introduction 13

Application Architecture 13
Model and View 13
Applications Are a Feedback Loop 15
Architectural Technologies 17
Application Tasks 17

2 Overview of Application Design Patterns 20

Model-View-Controller 21
Model-View-ViewModel+Coordinator 24
Model-View-Controller+ViewState 29
ModelAdapter-ViewBinder 32
The Elm Architecture 35
Networking 38
Patterns Not Covered 39

3 Model-View-Controller 42

Exploring the Implementation 43
Testing 57
Discussion 61
Improvements 63
Conclusion 76

4 Model-View-ViewModel+Coordinator 78

Exploring the Implementation 80
Testing 96
Discussion 100
MVVM with Less Reactive Programming 101
Lessons to Be Learned 107

5 Networking 111

Networking Challenges 112
Controller-Owned Networking 112
Model-Owned Networking 118
Discussion 123

6 Model-View-Controller+ViewState 126

View State as Part of the Model 126
Exploring the Implementation 130
Testing 143
Discussion 149
Lessons to Be Learned 151

7 ModelAdapter-ViewBinder 159

Exploring the Implementation 161
Testing 177
Discussion 183
Lessons to Be Learned 187

8 The Elm Architecture 195

Exploring the Implementation 196
The Elm Architecture Framework 209
Testing 216
Discussion 221
Lessons to Be Learned 223

About This Book
This book is about application architecture: the structures and tools used to bring
smaller components together to form an application. Architecture is an important topic
in app development since apps typically integrate a large number of diverse
components: user events, network services, file services, audio services, graphics and
windowing services, and more. Integrating these components while ensuring state and
state changes are reliably and correctly propagated between them requires a strong set
of rules about how the components should interoperate.

Application Design Patterns

Sets of repeatedly applied design rules are called design patterns, and in this book, we
will present an application that’s fully implemented in five major application design
patterns, which range from well established to experimental. These are:

→ Model-View-Controller (MVC)

→ Model-View-ViewModel+Coordinator (MVVM-C)

→ Model-View-Controller+ViewState (MVC+VS)

→ ModelAdapter-ViewBinder (MAVB)

→ The Elm Architecture (TEA)

The abstract block diagrams commonly used to describe application design patterns at
the highest level do little to describe how these patterns are applied to iOS applications.
To see what the patterns are like in practice, we’ll take a detailed look at typical program
flows in each of them.

We’ll also look at a range of different patterns to show that there is no single best
approach for writing programs. Any of the patterns could be the best choice depending
upon the goals, desires, and constraints of you, your program, and your team.
Application design patterns are not just a set of technical tools; they are also a set of
aesthetic and social tools that communicate your application to you and to other readers
of your code. As such, the best pattern is often the one that speaks most clearly to you.

Architectural Techniques and Lessons

After presenting each implementation, we’ll spend some time discussing both the
benefits each pattern offers for solving problems and how similar approaches can be
used to solve problems in any pattern. As an example, reducers, reactive programming,
interface decoupling, state enums, and multi-model abstractions are techniques often
associated with specific patterns, but in this book, after we look at how these techniques
are used within their patterns, we will also look at how their central ideas can solve
problems across different patterns.

As this book will demonstrate, application architecture is a topic with multiple solutions
to every problem. When properly implemented, all the solutions give the end user the
same result. This means that ultimately, application architecture is about making
choices to satisfy ourselves as programmers. We do this by asking questions such as
what problems we want solved implicitly, what problems we want to consider on a
case-by-case basis, where we need freedom, where we need consistency, where we want
abstraction, where we want simplicity.

About the Recordings App

In this book, we show five different implementations of a single application: the
Recordings app (the full source code of all implementations is available on GitHub). As
the name might suggest, it’s an app that records and plays voice notes. It also allows us
to organize the recordings in a folder hierarchy. The app features a navigation stack of
folder view controllers (for organizing files), a play view controller (for playing files), a
modal record view controller presentation (for recording new files), and text alert
controllers (for naming folders and recordings). All content is presented in a standard
UIKit master-detail interface (the folder view controllers appear in the primary pane,
and the play view controller appears in the secondary pane).

When choosing the sample app for this book, we made a list of criteria, and the
Recordings app fulfills all of them. It is complex enough to show architectural patterns,
yet simple enough to fit in a book. There is a nested navigation hierarchy. The app
contains views with real-time updates, rather than just static views. The model is
implemented as a persistent store that automatically saves each change to disk. We have
two versions of the app that include networking. Our app works on both iPhone and
iPad. Finally, we support state restoration.

https://github.com/objcio/app-architecture

Had we chosen a smaller app, it might have been easier to understand, but there would
have been fewer opportunities to show differences between architectures. Had we
chosen a larger app, the scalability of different architectural choices would have been
more apparent, but the details would have been harder to see. We believe the Recordings
app finds a good balance between these two extremes.

The app starts by showing a folder view controller for the root folder. The folder view
controller is presented in a navigation controller in the primary pane of a split view
controller. On the iPhone, this primary pane is presented in full-screen mode, and on an
iPad, it is presented on the left side of the screen (this is standard behavior of a
UISplitViewController on iOS).

A folder can contain both recordings and nested folders. The folder view controller lets
us add new folders and recordings and delete existing items.

Adding a folder brings up a modal alert view that asks for the folder name, and adding a
recording immediately presents the record view controller modally.

When selecting an item in the folder view controller, the navigation action depends on
the type of item: if we select a folder, a nested folder view controller is pushed onto the
navigation stack, and if we select a recording, a play view controller is pushed onto the
navigation stack.

The play view controller contains a text field used for both displaying and changing the
name. It also contains a slider for the current play progress: as we’re playing, the slider
changes, and when we move the slider, the playback continues at the chosen position.
Above the slider are labels for the current play position and total duration. Finally, the
play view controller contains a button to start, pause, and resume playback.

Videos

We have recorded videos that go together with the book, and they are available as a
separate purchase. The videos focus on topics that are best presented in a live coding
and discussion format, such as:

→ Building a new feature in each of the five versions of the Recordings app (a mini
player).

→ Building a very small app from scratch in eight different design patterns to
highlight their commonalities and differences.

→ Implementing a small version of the TEA framework.

We hope these videos will give you an even better idea of the practical implications of
each of the application design patterns covered in this book.

Introduction

1

Application Architecture
Application architecture is a branch of software design concerned with the structure of
an application. More specifically, it looks at both how applications are divided into
different interfaces and conceptual layers, and the control flow and data flow paths
taken by different operations between and within these different components.

We often use simple block diagrams to explain an application’s architecture. For
example, Apple’s Model-View-Controller (MVC) pattern describes three layers: the
model, the view, and the controller layer.

View

Controller

Model

The blocks in the above diagram show the different named layers of the pattern — the
majority of the code written in an MVC project fits into one of these layers. The arrows
show how the layers are connected.

However, a simple block diagram explains very little about how the pattern is expected
to operate in practice. This is because an application architecture includes many
expectations about how components should be constructed, how events flow through
the layers, whether components should have compile-time or runtime references to
each other, how data in different components should be read or mutated, and what
paths state changes should take through the application structure.

Model and View
At the highest level, an application architecture is a basic set of categories into which
different application components are separated. In this book, we call these different

categories layers: a collection of interfaces and other code that conform to some basic
rules and responsibilities.

The most common of these categories are the model layer and the view layer.

Themodel layer is an abstract description of the application’s contents without any
dependence on the application framework (such as UIKit). Therefore, it offers full
control to the programmer. The model layer typically contains both model objects
(examples in the Recordings app include folders and recordings) and coordinating
objects (for example, objects that persist data on disk, such as the Store in our example
application). The part of the model that’s persisted to disk is called the documentmodel.

The view layer is the application framework-dependent part that makes the model layer
visible and user interactable, turning the model layer into an application. When writing
iOS applications, the view layer almost always uses UIKit directly. However, as we will
see, some architectures have a different view layer that wraps around UIKit. And for
some custom applications, most notably games, the view layer might not be UIKit or
AppKit; it could be SceneKit or a wrapper around OpenGL.

Sometimes, model or view instances are represented by structs or enums rather than
objects. The difference is important in practice, but when we talk about objects, structs,
and enums in the model layer, we’ll call all three of themmodel objects— likewise for
view objects, which might manifest as objects, structs, or enums as well.

View objects typically form a single view hierarchy, in which all objects are connected in
a tree structure with the screen at the trunk, windows within the screen, and
increasingly smaller views at the branches and leaves. Likewise, view controllers
typically form a view controller hierarchy. Meanwhile, model objects don’t necessarily
form a hierarchy — there could be models in the program with no connection between
them.

When we write view, we usually mean a single view object, such as a button or a label.
When we writemodel, we usually mean a single model object, such as a Recording or
Folder instance. In most literature on the subject, “the model” means different things
depending on the context. It could mean the model layer, the concrete objects that are in
the model layer, the document model, or a discrete document within the model layer. At
the cost of verbosity, we try in this book to be explicit about the different meanings.

Why Are the Categories of Model and View Considered So

Fundamental?

It is certainly possible to write an application where there’s no separation between the
model and view layers. As an example, in a simple modal dialog, there is often no
separate model data. Instead, we read the state directly from user interface elements
when the “OK” button is tapped. In general though, without a separated model layer, it’s
difficult to ensure that actions in a program occur according to any coherent rules.

The most important reason to define a model layer is to have a single source of truth in
our program that is clean and well behaved and not governed by the implementation
details of the application framework.

An application framework provides infrastructure upon which we can build applications.
In this book we use Cocoa — more specifically, UIKit, AppKit, or WatchKit, depending on
the target platform — as the application framework.

If the model layer is kept separate from the application framework, we can use it
completely outside the bounds of the application. We can easily run it in a separate
testing harness, or we can write a new view layer using a different application framework
and use our model layer in the Android, macOS, or Windows version of the application.

Applications Are a Feedback Loop
The view layer and the model layer need to communicate. There are, therefore,
connections between the two. Assuming the view layer and model layer are clearly
separated and not inextricably linked, communication between the two will require
some form of translation:

View Model

View Action Model Action

Model Noti!cationView Change

Interaction Logic

Presentation Logic

The result is a feedback loop, which is not surprising, since a user interface with both
display and input functionality is fundamentally a feedback device. The challenge for
each application design pattern is how to handle the communication, dependencies,
and transformations inherent in the arrows shown in this diagram.

Different parts of the path between the model layer and view layer have different names.
The name view action refers to the code path triggered by a view in response to a
user-initiated event, such as a tapping a button or selecting a row in a table view. When a
view action is sent through to the model layer, it may be converted into amodel action
(an instruction to a model object to perform an action or update). This instruction might
also be called amessage (particularly when the model is changed using a reducer). The
transformation of view actions into model actions and other logic along this path is
called interaction logic.

Amodel update is a change to the state of one or more of the model objects. A model
update usually triggers amodel notification, i.e. an observable notification coming from
the model layer that describes what has changed. When views are dependent on model
data, notifications should trigger a view change to update the contents of the view layer.
These notifications can take multiple forms: Foundation’s Notiĩcation, delegates,
callbacks, or another mechanism. The transformation of model notifications and data
into view changes and other logic along this path is called presentation logic.

Depending on the application pattern, some state may be maintained outside the
document model, and therefore actions that update that state do not follow a path
through the document model. A common example of this in many patterns is the
navigation state, where subsections of the view hierarchy (called scenes, following the
terminology used by Cocoa storyboards) may be swapped in and out.

The state of an app that is not part of the document model is called view state. In Cocoa,
most view objects manage their own view state, and controller objects manage the
remaining view state. Diagrams of view state in Cocoa typically involve shortcuts across
the feedback loop or individual layers that loop back on themselves. In other
architectures, the view state is not part of the controller layer, but rather part of the
model layer (however, by definition, view state isn’t part of the documentmodel).

When all state is maintained in the model layer and all changes follow this full feedback
loop path, we call it unidirectional data flow. If the only way for any view object or
intermediate layer object to be created or updated is via notifications from the model

(i.e. there is no shortcut where a view or intermediate layer can update itself or another
view), the pattern is usually unidirectional.

Architectural Technologies
The standard Cocoa frameworks on Apple’s platforms provide some architectural tools.
Notifications broadcast values from a single source to zero or more listeners. Key-value
observing (KVO) can report changes to a property on one object to another object.
However, because the list of architectural tools in Cocoa runs out quickly, we’ll make use
of additional frameworks.

One of the third-party technologies used in this book is reactive programming. Reactive
programming is another tool for communicating changes, but unlike notifications or
KVO, it focuses on the transformations between the source and destination, allowing
logic to be expressed in transit between components.

We can use techniques like reactive programming or KVO to create bindings. A binding
takes a source and a target, and whenever the source changes, it updates the target. This
is syntactically different from a manual observation; rather than writing observation
logic, we only specify source and target, and the framework takes care of the rest.

Cocoa on macOS includes Cocoa bindings, which is a two-way form of binding — all
observables are also observers, and establishing a binding connection in one direction
also establishes a connection in the reverse direction. None of the bindings provided by
RxCocoa (used in the MVVM-C chapter) or CwlViews (used in the MAVB chapter) are
two-way bindings — so any discussion of bindings in this book will refer solely to
one-way bindings.

Application Tasks
For a program to function, views must be created, populated with model data,
configured to make changes on the model, and updated when the model updates.

For this reason, we have to decide how to perform the following tasks:

1. Construction— Who constructs the model and the views and connects the two?

2. Updating themodel— How are view actions handled?

3. Changing the view— How is model data applied to the view?

4. View state— How are navigation and other non-model state handled?

5. Testing— What testing strategies are used to achieve reasonable test case code
coverage?

The answers to these five questions form the basis of the application design patterns
we’ll look at in this book.

Overview of
Application
Design Patterns

2

This book focuses on five different implementations of the Recordings application using
the following application design patterns.

The first two are patterns in common use on iOS:

→ Standard CocoaModel-View-Controller (MVC) is the pattern used by Apple in
its sample applications. This is easily the most common architecture in Cocoa
applications, and it’s the baseline for any discussion about architecture in Cocoa.

→ Model-View-ViewModel+Coordinator (MVVM-C) is a variant of MVC with a
separate view-model and a coordinator to manage the view controller hierarchy.
MVVM uses data binding (typically with reactive programming) to establish the
connections between the view-model and the view layer.

The other three patterns we look at are experimental architectures that are uncommon
in Cocoa. We believe they offer useful insights into application architecture that can
help improve our code, regardless of whether or not we adopt the entire architecture:

→ Model-View-Controller+ViewState (MVC+VS) centralizes the entire view state
into a single location, following the same rules as the model, rather than
spreading it among views and view controllers.

→ ModelAdapter-ViewBinder (MAVB) is an experimental architecture pattern by
one of the authors. MAVB focuses on declarative view construction and uses
bindings rather than controllers to communicate between the model and the
view.

→ The ElmArchitecture (TEA) is the most radical departure from common design
patterns like MVC or MVVM. It uses a virtual view hierarchy to construct views
and reducers that interact between models and views.

In this chapter, we’ll give an overview of the philosophy and choices behind each of
these patterns, while subsequent chapters will look at the impact of those choices on the
implementation of the Recordings app.

These five patterns are certainly not an exhaustive list of application design patterns for
iOS, but as we discuss each one, we’ll try to shed more light on why we think it’s worth
covering in the book. At the end of this chapter, we’ll briefly discuss some of the patterns
we omitted.

Model-View-Controller
In Cocoa MVC, a small number of controller objects handle all tasks that fall outside the
model or view layers.

This means that the controller layer receives all view actions, handles all interaction
logic, dispatches all model actions, receives all model notifications, prepares all data for
presentation, and applies changes to the views. If we look at the diagram of the
application feedback loop in the Introduction chapter, the controller is every labeled
point on both arrows between model and view, in addition to construction and
navigation tasks that aren’t labeled.

The following is a block diagram of MVC showing the major communication paths
through an MVC application:

View

Controller

Model

Sends an action Changes the view

Changes the model Observes the model

Changes its
internal state

Changes its
internal state

The dotted lines in this diagram represent runtime references; neither the view layer nor
the model layer reference the controller layer directly in code. Solid lines represent
compile-time references; a controller instance knows the interface of the view and
model objects to which it’s connected.

If we trace the boundary on the outside of this diagram, we get the MVC version of the
application feedback loop. Notice there are other paths through the diagram that don’t

take this whole path (indicated by the arrows that curve back on the view and controller
layers).

1. Construction

The application object starts construction of top-level view controllers, which load and
configure views and include knowledge about which data from the model must be
represented. A controller either explicitly creates and owns the model layer, or it
attempts to access the model through a lazily constructed singleton. In multi-document
arrangements, the model layer is owned by a lower-level controller like
UIDocument/NSDocument. Cached references to individual model objects relevant to
views are usually held by the controllers.

2. Updating theModel

In MVC, the controller receives view events mostly through the target/action mechanism
and delegates (set up in either storyboards or code). The controller knows what kind of
views it’s connected to, but the view has no static knowledge of the controller’s interface.
When a view event arrives, the controller can change its internal state, change the model,
or directly change the view hierarchy.

3. Changing the View

In our interpretation of MVC, the controller should not directly change the view
hierarchy when a model-changing view action occurs. Instead, the controller is
subscribed to model notifications and changes the view hierarchy once a model
notification arrives. This way, the data flows in a single direction: view actions get
turned into model changes, and the model sends notifications that get turned into view
changes.

4. View State

View state may be stored in properties on the view or the controller as needed. View
actions affecting state on a view or controller are not required to pass via the model.
View state can be persisted using a combination of support from the storyboard layer —

which records the active controller hierarchy — and through the implementation of
UIStateRestoring, which is used to read data from the controllers and views.

5. Testing

In MVC, view controllers are tightly integrated with other components of an application.
This lack of boundaries makes unit and interface tests difficult to write, leaving
integration testing as one of the few viable testing approaches. In an integration test, we
build connected sections of the view, model, and controller layers; we manipulate either
the model or the view; and we test for the desired effect.

An integration test is complicated to write but also covers a lot of ground. It tests not just
logic, but also how components are connected — although not to the same degree as UI
tests do in some cases. However, it is usually possible to achieve around 80 percent test
coverage using integration tests in MVC.

Importance of Model-View-Controller

As the pattern used by Apple in all sample applications — and the pattern Cocoa is
designed to support — Cocoa MVC is the authoritative default application architectural
pattern on iOS, macOS, tvOS, and watchOS.

The specific implementation of the Recordings app presented in this book offers an
interpretation of MVC that we feel most accurately reflects a common denominator
across the history of iOS and macOS. However, as we’ll see later on, the freedom of the
MVC pattern permits a large number of variants: many ideas from other patterns can be
integrated within smaller sections of the overall app.

History

The name MVC was first used in 1979 by Trygve Reenskaug to describe the existing
application “template pattern” in Smalltalk-76, following a terminology discussion with
Adele Goldberg (previous names included Model-View-Editor and
Model-View-Tool-Editor).

In the original formulation, views were directly “attached” to model objects (observing
all changes), and the purpose of a controller was merely to capture user events and

forward them to the model. Both of these traits are products of how Smalltalk worked
and have little purpose in modern application frameworks, so the original formulation
of MVC is rarely used today.

The enduring concepts from the original Smalltalk implementation of MVC are the
premise of separated presentation— that the view and model layers should be kept apart
— and that there’s a strong need for a supporting object to aid the communication
between the two.

The Cocoa implementation of MVC has its roots in NeXTSTEP 4 from approximately
1997. Prior to that time, all of the roles now handled by the controller were typically the
responsibility of a high-level view class — often the NSWindow. The controller concept
in NeXTSTEP is very similar to the presenter class from Taligent’s earlier
Model-View-Presenter. In modern contexts, the name Model-View-Presenter is often
used for MVC-like patterns where the view is abstracted from the controller by a
protocol.

Model-View-ViewModel+Coordinator
MVVM, like MVC, is structured around the idea of a scene — a subtree of the view
hierarchy that may be swapped in or out during a navigation change.

The defining aspect of MVVM, relative to MVC, is that it uses a view-model for each scene
to describe the presentation and interaction logic of the scene.

A view-model is an object that does not include compile-time references to the views or
controllers. Instead, it exposes properties that describe the presentation values of the
views (the values each view displays). These presentation values are derived from the
underlying model objects by applying a series of transformations so that they can be
directly set on the views. The actual setting of values on views is handled by bindings
that take these presentation values and ensure they are set on the views whenever they
change. Reactive programming is a tool for expressing this type of declarative,
transformative relationship, so it’s a natural fit (although not strictly necessary) for
view-models. In many cases, the entire view-model can be expressed declaratively using
reactive programming bindings.

Not having a reference to the view layer theoretically makes the view-model
independent of the application framework and allows testing independent from the
application framework.

Since the view-model is coupled to the scene, it’s helpful to have an object that provides
logic between scene transitions. In MVVM-C, this object is called a coordinator. A
coordinator is an object that holds references to the model layer and understands the
structure of the view controller tree so that it can provide the required model objects to
the view-model for each scene.

Unlike in MVC, the view controller in MVVM-C never directly references other view
controllers (or view-models, for that matter). Instead, view controllers notify the
coordinator (through a delegate mechanism) about relevant view actions. The
coordinator then presents new view controllers and sets their model data. In other
words: the view controller hierarchy is managed by the coordinator and not by view
controllers.

The resulting architecture has the following overall structure:

Sends an
action

View

View Controller

View-Model

Changes
the view

Changes the
view-model

Sends
presentation
changes

Model

Changes
the model

Observes
the model

Coordinator

Sends events

Presents and dismisses
view controllers

Changes its
internal state

Changes its
internal state

If we ignore the coordinator, this diagram is similar to MVC — with an additional stage
between the view controller and the model. MVVM offloads most of the work that was
previously in the view controller onto the view-model, but note that the view-model has
no compile-time reference (solid line) in the direction of the view controller.

The view-model can be separated from the view controller and views and tested
independently. Likewise, the view controller no longer has internal view state — this is
moved to the view-model. The double role of the view controller in MVC (as part of the
view hierarchy and also mediating interactions between the view and the model) is
reduced to a single role (the view controller is solely part of the view hierarchy).

The coordinator pattern adds to this and removes yet another responsibility of view
controllers: presenting other view controllers. As such, it reduces coupling between
view controllers at the expense of at least one more controller-layer interface.

1. Construction

Construction of the model is unchanged from MVC and typically remains the
responsibility of one of the top-level controllers. The individual model objects, however,
are owned by the view-models and not by the view controllers.

The initial construction of the view hierarchy works like in MVC and is done through
storyboards or in code. However, unlike in MVC, the view controller doesn’t directly
fetch and prepare data for each view, but instead leaves this task to the view-model. The
view controller creates a view-model upon construction and then binds each view to the
relevant property exposed by the view-model.

2. Updating theModel

In MVVM, the view controller receives view events in the same way as in MVC (and the
connection between view and view controller is set up the same way). However, when a
view event arrives, the view controller doesn’t change its internal state, the view state, or
the model — instead, it immediately calls a method on the view-model. In turn, the
view-model changes its internal state or the model.

3. Changing the View

Unlike with MVC, the view controller doesn’t observe the model. Instead, the
view-model observes the model and transforms the model notifications in such a way
that the view controller understands them. The view controller subscribes to the
view-model’s changes, typically using bindings from a reactive programming
framework, but it could be any observation mechanism. When a view-model event
arrives, the view controller changes the view hierarchy.

To be unidirectional, the view-model should always send model-changing view actions
through the model and only notify the relevant observers after the model change has
taken place.

4. View State

The view state is either in the views themselves or in the view-model. Unlike in MVC, the
view controller doesn’t have any view state. Changes to the view-model’s view state are

observed by the controller, although the controller can’t distinguish between model
notifications and view state change notifications. When using coordinators, the view
controller hierarchy is managed by the coordinator(s).

5. Testing

Because the view-model is decoupled from the view layer and controller layer, the
view-model can be tested using interface testing, rather than with MVC’s integration
testing. Interface tests are much simpler than integration tests, as they don’t need to set
up the entire hierarchy of components.

To cover as much as possible using interface tests, the view controller needs to be as
simple as possible, but the parts that aren’t moved out of the view controller still need to
be tested separately. In our implementation, this includes both interaction with the
coordinator and the initial construction.

Importance of Model-View-ViewModel

MVVM is the most popular application design pattern on iOS that is not a direct variant
of MVC. That said, it’s not dramatically different from MVC either; both are structured
around view controller scenes and use most of the same machinery.

The biggest difference is probably the use of reactive programming to express logic in
the view-model as a series of transformations and dependencies. Using reactive
programming to clearly describe the relationship between model object and
presentation values provides an important lesson in understanding dependencies in
applications more generally.

Coordinators are a useful pattern in iOS because managing the view controller hierarchy
is such an important concept. Coordinators are not inherently tied to MVVM, and they
can be used with MVC or other patterns as well.

History

MVVM was formulated by Ken Cooper and Ted Peters, who were working at Microsoft on
what would become the Windows Presentation Foundation (WPF), an application
framework for Microsoft .NET released in 2005.

WPF uses a declarative XML-based language called XAML to describe the properties on
the view-model to which the view binds. In Cocoa, without XAML, frameworks like
RxSwift, along with code (usually in the controller), must be used to perform the binding
between view-model and the view.

MVVM is very similar to the MVP pattern mentioned in the history of MVC. However, as
Cooper and Peters described it, MVVM requires explicit framework support for the
binding between the view and the view-model, whereas presenters traditionally
propagate changes manually between the two.

Coordinators in iOS were recently (re)popularized by Soroush Khanlou, who described
them on his website in 2015, though they are based on the older pattern of application
controllers that have been in Cocoa and other platforms for decades.

Model-View-Controller+ViewState
MVC+VS is an attempt to bring a unidirectional data flow approach to otherwise
standard MVC. Rather than following the two or three different paths view state can take
in standard Cocoa MVC, it aims to make the handling of view state more manageable. In
MVC+VS, we explicitly identify and represent all view state in a new model object called
the view state model.

In MVC+VS, we don’t ignore any navigation change, row selection, text field edit, toggle,
modal presentation, or scroll position change (or other view state changes). Instead, we
send these changes to a view state model action. Each view controller observes the view
state model, which makes communicating changes straightforward. In presentation or
interaction logic, we never read view state from the views, but instead read it from the
view state model:

http://khanlou.com/2015/01/the-coordinator/

View

Controller

Document Model

Changes the
document

Observes the
document

View State Model

Changes the
view state

Observes the
view state

Sends an action Changes the view

The resulting diagram is similar to MVC, but instead of the controller’s internal feedback
loop (which was used for the view state), there is now a separate view state loop (similar
to the model loop).

1. Construction

While it’s still the responsibility of the view controllers to apply document model data to
the views — as in typical MVC — the view controller also applies and subscribes to the
view state. This forces a larger amount of work through the notification observing
functions — and since there’s both a view state model and a document model to observe,
there are more observing functions than in typical MVC.

2. Updating theModel

When a view action happens, the view controller changes either the document model
(unchanged from MVC) or the view state model. We don’t change the view hierarchy
directly; instead, all changes flow through the document model and view state model.

3. Changing the View

The controller observes both the document model and the view state model and updates
the view hierarchy only when changes occur.

4. View State

View state is made explicit and is extracted from the view controller. The treatment is
identical to the model: the controllers observe the view state model and change the view
hierarchy accordingly.

5. Testing

In MVC+VS, we use integration testing like in MVC, but the tests themselves are quite
different. Every test starts with an empty root view controller, and by setting the
document model and view state model, the root view controller builds up the entire
hierarchy of views and view controllers. The hardest part of integration testing in MVC
(setting up all the components) is done automatically in MVC+VS. To test a different
view state, we can set the global view state and all view controllers will adjust
themselves.

Once the view hierarchy is constructed, we write two kinds of tests. The first kind tests
whether or not the view hierarchy is constructed according to our expectations, and the
second kind tests whether or not view actions change the view state correctly.

Importance of Model-View-Controller+ViewState

MVC+VS is primarily a teaching tool for the concept of view state.

In an application that is otherwise standard MVC, adding a view state model and
observing it in each view controller (in addition to the model observing already present)
offers several advantages: arbitrary state restoration (not reliant on storyboards or
UIStateRestoration), full user interface state logging, and the ability to jump between
different view states for debugging purposes.

History

This specific formulation was developed by Matt Gallagher in 2017 as a teaching tool for
the concepts of unidirectional data flow and time travel in user interfaces. The goal was
to make the minimum number of changes required to a traditional Cocoa MVC app so
that a snapshot could be taken of the state of the views on every action.

ModelAdapter-ViewBinder
MAVB is an experimental pattern centered around bindings. In this pattern, there are
three important concepts: view binders, model adapters, and bindings.

A view binder is a wrapper class around a view class (or view controller class): it
constructs the view and exposes a list of bindings for it. Some bindings provide data to
the view (e.g. a label’s text), while others emit events from the view (e.g. a button click or
a navigation change).

Although view binders can contain dynamic bindings, view binders themselves are
immutable. This makes MAVB another declarative pattern: you declare your view
binders and their behavior once rather than changing view binders over time.

A model adapter is a wrapper around mutable state and is implemented using a
so-called reducer. The model adapter provides an input binding (to send events into)
and an output binding (to receive updates).

In MAVB, you don’t create views directly; rather, you only construct view binders.
Likewise, you never work with mutable state, except in model adapters. The
transformation between view binders and model adapters (in both directions) is done by
transforming the bindings (using standard reactive programming techniques).

MAVB removes the need for a controller layer. The construction logic is expressed
through view binders, the transformation logic is expressed in the bindings, and the
state changes are expressed through model adapters. The resulting diagram looks like
this:

View

View Binder

Model Adapter

Model

Sends an action Changes the view

Action binding transforms
the view action into a

model action

Value binding transforms
the model data into
presentation values

Changes the model Observes the model

1. Construction

A model adapter (wrapping the main model) and a view state adapter (wrapping the
top-level view state) are typically constructed in themain.swift file before any views.

View binders are constructed using plain functions. These functions take the necessary
model adapters as parameters. The actual Cocoa view objects are constructed by the
framework.

2. Updating theModel

When a view (or view controller) can emit actions, the corresponding view binding
allows us to specify an action binding. Here, the data flows from the view to the output
end of the action binding. Typically, the output end is connected to a model adapter,
and the binding is used to transform the view event into a message that the model
adapter can understand. This message is then used by the model adapter’s reducer to
change the state.

3. Changing the View

After a model adapter’s state changes, it emits notifications through its output signal. In
a view binder, we can transform the model adapter’s output signal and bind it to a view
property. Therefore, the view property automatically changes when a notification is
emitted.

4. View State

View state is considered a part of the model layer. View state actions and view state
notifications take the same path as model actions and model notifications.

5. Testing

In MAVB, we test our code by testing the view binders. As a view binder is a list of
bindings, we can verify that the bindings contain the items we expect and that they are
configured correctly. We can use the bindings to test both initial construction and
changes.

Testing in MAVB is similar to testing in MVVM. However, in MVVM, it’s possible to have
logic in the view controller, which potentially leaves untested code between the
view-model and view. As MAVB doesn’t have view controllers, and the binding is the
only piece of code between the model adapter and view binder, it’s much easier to
guarantee full test coverage.

Importance of ModelAdapter–ViewBinder

Of the major patterns we’re examining, MAVB has no direct precedent — it is not an
implementation of a pattern from another platform or a variation on another pattern. It
is its own thing: experimental and a little weird. Its inclusion here is to show something
that’s proudly different. But that’s not to say it takes no lessons or ideas from other
patterns — bindings, reactive programming, domain-specific languages, and reducers
are all well-known ideas.

History

MAVB was first described by Matt Gallagher on the Cocoa with Love website. The
pattern draws inspiration from Cocoa bindings, Functional Reactive Animation,
ComponentKit, XAML, Redux, and experiences working in Cocoa view controllers with
thousands of lines.

The implementation in this book uses the CwlViews framework to handle the view
construction, binder, and adapter implementations.

The Elm Architecture
TEA is a more radical departure from MVC. In TEA, the model and all view state are
integrated as a single state object, and all changes in the application occur by sending
messages to this state object, which processes the messages in a state-updating function
called a reducer.

In TEA, each change to the state creates a new virtual view hierarchy, which is
composed of lightweight structs that describe how the view hierarchy should look. The
virtual view hierarchy allows us to write our views as a pure function; the virtual view
hierarchy is always directly computed from the state, without any side effects. When the
state changes, we recompute the virtual view hierarchy using the same function instead
of changing the view hierarchy directly.

The Driver (which is part of the TEA framework and holds references to the other layers
in TEA) compares the virtual view hierarchy to the UIView hierarchy and applies the
necessary changes to make the views match their virtual counterparts. The driver is a
component of the TEA framework that we instantiate once for our application, and it
doesn’t know about the specifics of the application itself. Instead, we pass this
information into its initializer: the app’s initial state, a function to update the state from
a message, a function to render the virtual view hierarchy for a given state, and a
function to compute the subscriptions for a given state (for example, we can subscribe to
the store’s change notifications).

From the perspective of a user of the framework, a block diagram of changes in TEA
looks like this:

Virtual View

State

Store

Sends a message
Is transformed into
new virtual views

Sends a command
Sends a model
update message

If we trace around the upper two layers of this diagram, we get the feedback loop
between the view and the model that we showed at the start of this chapter; it’s a loop
from view to state and then back to the view (mediated through the TEA framework).

The lower loop represents TEA’s way of dealing with side effects (like writing data to
disk): when processing a message in the state’s update method, we can return a
command, and these commands are executed by the driver. In our case, the most
important commands are for changing the contents of the store. The store in turn is
observed by subscriptions owned by the driver. These subscriptions can trigger
messages to change the state, which triggers view rerendering in response.

The structure of these event loops makes TEA another example of a design pattern
following the unidirectional data flow principle.

1. Construction

The state is constructed on startup and passed to the runtime system (the driver). The
runtime system owns the state. The store is a singleton.

The initial view hierarchy is constructed through the same path that’s used for updates
later on: a virtual view hierarchy is computed from the current state, and the runtime
system takes care of updating the real view hierarchy to match the virtual view
hierarchy.

2. Updating theModel

Virtual views have messages associated with them that get sent when a view event
occurs. The driver receives these messages and uses the update method to change the
state. The update method can return a command (a side effect) — for example, a change
we want to make in the store. The driver interprets this command and executes it. The
TEA framework makes it impossible for the views to change the state or store directly.

3. Changing the View

The runtime system takes care of this. The only way to change the views is by changing
the state. Therefore, there is no difference between initial construction and updating the
view hierarchy.

4. View State

The view state is included in the state. As the view is computed directly from the state,
the navigation and interaction state are automatically updated as well.

5. Testing

In most architectures, it takes a lot of effort to test that components are connected. In
TEA, we don’t need to test this, as the driver automatically takes care of it. Similarly, we
don’t need to test that the view changes correctly when the state changes. Instead, we
only need to test that the correct virtual view hierarchy is computed for a given state.

To test changes to the state, we can take a given state and use the update function with a
message to change the state. We can then compare the before and after states and verify
that update returns the expected commands for a given state and message. In TEA, we
can also test that the correct subscriptions are returned for a given state. Like the view
hierarchy, both the update function and the subscriptions are pure functions.

Because all the components (computing the virtual view hierarchy, the update function,
and the subscriptions) are pure functions, we can test them in complete isolation. We
don’t need to instantiate any framework components: instead, we pass in parameters
and verify the result. Most tests for our TEA implementation are straightforward.

Importance of The Elm Architecture

TEA was first implemented in Elm, a functional programming language. TEA is
therefore a look into how GUI programming can be expressed in a functional way. TEA is
also the oldest unidirectional data flow architecture.

History

The Elm language is a functional programming language initially designed by Evan
Czaplicki for building frontend web apps. TEA is a pattern attributed to the Elm
community, and it reportedly emerged naturally from the constraints of the language
and the target environment. The ideas behind it have influenced other web-based
frameworks like React, Redux, and Flux. There is no authoritative implementation of
TEA in Swift, but there are a number of research projects. For this book, we have built
our own interpretation of the pattern in Swift. The main work was done by Chris Eidhof
in 2017. While our specific implementation is not “production ready,” many of the ideas
can be used in production code.

Throughout the book, we use the word state; in Elm, this is calledmodel. We chose to
call it state even when referring to TEA, as the word model has a different meaning in
this book.

Networking
There is also a chapter about networking in this book. In it, we take the MVC version of
our app and show two different ways of adding networking. In the first approach,
controller-owned networking, we replace the model layer with a web service. In the
second approach,model-owned networking, we add networking on top of the model
layer.

Controller-owned networking is simpler to start with: each view controller performs
requests as needed and caches the results locally. However, this pattern becomes
impractical once the data needs to be shared across view controllers. At this point, it is
often easier to move to model-owned networking. With networking being an extension
of the model layer, we have an established mechanism for sharing data and
communicating changes.

Patterns Not Covered
We’ve chosen to cover five different patterns in this book. Three of them are MVC
variants, and two of them are experimental or not production ready. Why these patterns
and not some of the other design patterns that exist in shipping applications? Below,
we’ll briefly outline some of the other contenders and why we didn’t include them.

Model-View-Presenter

Model-View-Presenter (MVP) is a pattern that’s popular on Android and has
implementations on iOS. It sits roughly between standard MVC and MVVM in terms of
overall structure and technologies used.

MVP uses a separate presenter object that occupies the same position the view-model
occupies in MVVM. Relative to the view-model, the presenter omits reactive
programming, along with the expectation that presentation values are exposed as
properties on the interface. However, when values need to change, the presenter
immediately pushes them down to the views (which are exposed to the presenter as a
protocol).

In terms of abstraction, MVP is similar to MVC. Cocoa MVC, despite its name, isMVP —
it is derived from Taligent’s original MVP implementation in the 1990s. Views, state, and
related logic are represented identically in both patterns. The difference is that modern
MVP has a separate presenter entity, and it uses protocol boundaries between the
presenter and view controller, whereas Cocoa MVC lets the controller directly reference
the view.

Some developers believe the protocol separation is necessary for testing. When we
discuss testing, we’ll show how standard MVC can be fully tested without any
separation, and as such, we feel that MVP isn’t different enough. If we strongly desire a
fully decoupled representation for testing, we think MVVM’s approach is simpler: have
the view controller pull the values from the view-model via observing rather than having
the presenter push values to a protocol.

VIPER, Riblets, and Other “Clean” Patterns

VIPER, Riblets, and similar patterns are efforts to bring Robert Martin’s “Clean
Architecture” from web applications to iOS development by spreading the roles of the
controller across three to four different classes with a strict sequential ordering. Each
class is forbidden from directly referencing preceding classes in the sequence.

To enforce the rules about referencing in one direction only, these patterns require a lot
of protocols, classes, and passing of data between layers. For this reason, many
developers using these patterns use code generators. Our feeling is that code generators
— and any patterns verbose enough to imply their need — are misguided. Attempts to
bring “Clean Architecture” to Cocoa usually claim to manage “massive view controllers,”
but ironically, do so by making the code base even larger.

While interface decomposition is a valid approach for managing code size, we feel it
should be performed as needed, rather than methodically and per view controller.
Decomposition should be performed along with knowledge of the data and tasks
involved so that the best abstraction — and hence the best reduction in complexity —
can be achieved.

Component-Based Architecture (React Native)

If you prefer programming in JavaScript to Swift, or if your application relies heavily on
web API interactions that work better in JavaScript, you might consider React Native.
However, this book is focused on Swift and Cocoa, so we’re limiting the patterns
explored to those domains.

If you’re looking for something like React Native but in Swift, then take a look at our
exploration of TEA. The MAVB implementation also takes inspiration from
ComponentKit — itself inspired by React — and uses a DSL-like syntax for declarative,
transformational view construction with parallels to the render function in React
Components.

Model-View-
Controller

3

The Model-View-Controller (MVC) pattern is the baseline for all other patterns discussed
in this book. It is also the authoritative pattern of the Cocoa frameworks and the oldest
pattern we will discuss.

The key premise of MVC is that the model layer and view layers are brought together by
the controller layer, which constructs and configures the other two layers and mediates
communication — in both directions — between model and view objects. Thus, the
controller layer represents the backbone upon which the application feedback loop is
formed in MVC apps:

View

Controller

Model

Sends an action Changes the view

Changes the model Observes the model

Changes its
internal state

Changes its
internal state

MVC is based on classic object-oriented principles: objects manage their behaviors and
state internally and communicate via class and protocol interfaces; view objects are
typically self-contained, reusable objects; and model objects are presentation
independent and avoid dependence upon the rest of the program. It is therefore the
responsibility of the controller layer to combine the other two layers into a program.

Apple describes MVC as a collection of three distinct subpatterns:

1. Composite pattern — views are assembled together into hierarchies, and sections
of the hierarchy are managed in groups by controller objects.

2. Strategy pattern — controller objects are mediators between the view and model
and manage all application-specific behaviors for reusable,
application-independent views.

3. Observer pattern — objects dependent on model data must subscribe to receive
updates.

The MVC pattern is often interpreted quite loosely such that these subpatterns — in
particular, the observer pattern — are not always followed. However, we will include all
three as part of our implementation.

The MVC pattern has some well-known deficiencies, the foremost of which is the
massive view controller problem (which uses the same MVC acronym as the pattern),
wherein the controller layer takes on too many responsibilities. MVC also presents
difficulties in testing, thereby making unit tests and interface tests difficult or
impossible. Despite these shortcomings, MVC remains the simplest pattern to use for
iOS apps, can scale to suit any program — provided you understand its shortcomings
and how to counter them — and can include robust testing.

In the next section, we will discuss the implementation details of the MVC variant of the
Recordings app. We only show parts of the source code in the book, but the complete
source code (of all variants of the app) is available on GitHub.

Exploring the Implementation

Construction

The construction process in Cocoa MVC largely follows the default startup process
provided by the Cocoa framework. The key aim of this process is to ensure the
construction of three objects: the UIApplication object, the application delegate, and the
root view controller of the main window. The configuration of this process is distributed
across three files, which are by default named Info.plist, AppDelegate.swift, and
Main.storyboard.

These three objects — all part of the controller layer — provide configurable locations to
continue the startup process in, thereby placing the controller layer in charge of all
construction.

https://github.com/objcio/app-architecture

Connecting Views to Initial Data

Views in an MVC app do not directly reference model objects; they are kept independent
and reusable. Instead, model objects are stored in the view controller. This makes the
view controller a non-reusable class, but that’s the purpose of view controllers: to give
application-specific knowledge to other components in the program.

The model object stored in the view controller gives the latter identity (letting the view
controller understand its position in the program and how to talk to the model layer).
The view controller extracts and transforms the relevant property values from the model
object before setting these transformed values on any child views.

Exactly how this identity object is set on a view controller varies. In the Recordings app,
there are two different strategies used for setting the initial model value on view
controllers:

1. Immediately accessing a global model object for the controller based on the
controller’s type or location in the controller hierarchy.

2. Initially setting references to model objects to nil and keeping everything in a
blank state until a non-nil value is provided by another controller.

A third strategy — passing the model object on construction (also known as dependency
injection) — would be preferred if it were possible. However, the storyboard
construction process typically prevents passing construction parameters to view
controllers.

The FolderViewController is an example of the first strategy. Each folder view controller
initially sets its folder property as follows:

var folder: Folder = Store.shared.rootFolder {
// ...

}

This means that on initial construction, every folder view controller assumes it
represents the root folder. If it actually is a child folder view controller, then the parent
folder view controller will set the folder value to something else during perform(segue:).
This approach ensures that the folder property in the folder view controller is not
optional, and that the code can be written without having to conditionally test for the
existence of the folder object, since there is always at least the root folder.

In the Recordings app, the model object Store.shared is a lazily constructed singleton.
This means that the moment when the first folder view controller attempts to access the
Store.shared.rootFolder is probably the point when the shared store instance is
constructed.

The PlayViewController (the detail view in the top-level split view) uses an initially nil
optional reference for its model object and therefore represents the second strategy for
setting the identity reference:

var recording: Recording? {
// ...

}

When the value of recording is nil, the play view controller shows a blank (“No recording
selected”) display. Note that nil is an expected state, and it is not used as a workaround
for Swift’s strict initialization requirements. The recording is set from the outside, either
from the folder view controller or by the state restoration process. In either case, once
this primary model object is set, the controller responds by updating the views.

Another example of the controller responding to a primary model change is in the folder
view controller. The navigation title (the display of the folder name in the navigation bar
at the top of the screen) must be updated when the folder is set:

var folder: Folder = Store.shared.rootFolder {
didSet {
tableView.reloadData()

if folder === folder.store?.rootFolder {
title = .recordings

} else {
title = folder.name

}

}

}

The call to tableView.reloadData()will ensure that all the UITableViewCells displayed are
updated too.

As a rule, whenever we read the initial model data, we must also observe changes to the
model. In the folder view controller’s viewDidLoad, we add the view controller as an
observer of model notifications:

override func viewDidLoad() {
super.viewDidLoad()
// ...

NotiĩcationCenter.default.addObserver(self,
selector: #selector(handleChangeNotiĩcation(_:)),

name: Store.changedNotiĩcation, object: nil)
}

We’ll discuss how we handle these notifications in the handleChangeNotiĩcationmethod
covered later on in this chapter.

State Restoration

State restoration in MVC uses the storyboard system, which acts as part of the controller
layer. Opting into this system requires the following methods to be implemented on the
AppDelegate:

func application(_ application: UIApplication,
shouldSaveApplicationState coder: NSCoder) -> Bool

{

return true
}

func application(_ application: UIApplication,
shouldRestoreApplicationState coder: NSCoder) -> Bool

{

return true
}

Once these two methods are implemented, the storyboard system takes over. View
controllers that should be saved and restored automatically by the storyboard system
are configured with a restoration identifier. For example, the root view controller in the
Recordings app has the restoration identifier splitController specified on the Identity

inspector in the storyboard editor. Similar identifiers exist for every scene in the
Recordings app except the RecordViewController (which is deliberately non-persistent).

While the storyboard system preserves the existence of these view controllers, it will not
preserve the model data stored in each view controller without us doing further work.
To store this extra state, each view controller must implement
encodeRestorableState(with:) and decodeRestorableState(with:). This is the
implementation on the FolderViewController:

override func encodeRestorableState(with coder: NSCoder) {
super.encodeRestorableState(with: coder)
coder.encode(folder.uuidPath, forKey: .uuidPathKey)

}

The encoding part is simple — the FolderViewController saves the uuidPath that
identifies its Foldermodel object. The decoding part is a little more complicated:

override func decodeRestorableState(with coder: NSCoder) {
super.decodeRestorableState(with: coder)
if let uuidPath = coder.decodeObject(forKey: .uuidPathKey) as? [UUID],
let folder = Store.shared.item(atUUIDPath: uuidPath) as? Folder

{

self.folder = folder
} else {
if let index = navigationController?.viewControllers.index(of: self),
index != 0

{

navigationController?.viewControllers.remove(at: index)

}

}

}

After decoding the uuidPath, the FolderViewControllermust check that the item still
exists in the store so that it can set its folder property to the item. If the item does not
exist in the store, then the FolderViewControllermust attempt to remove itself from its
parent navigation controller’s list of view controllers.

Changing theModel

The broadest interpretations of MVC don’t include any details about how to implement
the model, how model changes should occur, or how the view should respond to the
changes. In the earliest versions of macOS, following the precedent set by the earlier
Document-View patterns, it was common to have controller objects like
NSWindowController or NSDocument directly change the model in response to view
actions and then directly update the view as part of the same function.

For our implementation of MVC, we believe actions that update the model should not
occur in the same function as changes to the view hierarchy. Instead, these actions must
return without assuming any effect on the model state. After the construction phase,
changes to the view hierarchy may occur only as a result of observation callbacks —
following the observer pattern that is part of the MVC formulation.

The observer pattern is essential to maintaining a clean separation of model and view in
MVC. The advantage of this approach is that we can be sure the UI is in sync with the
model data, no matter where the change originated from (e.g. from a view event, a
background task, or the network). Additionally, the model has a chance to reject or
modify the requested change:

Changes its
internal state

Changes its
internal state

View

Controller

Model

1

2 3

4Sends an action Changes the view

Changes the model Observes the model

In this next section, we’ll look at the steps involved in deleting an item from a folder.

Step 1: Table View Sends Action

In our example app, the data source of the table view is set to the folder view controller
by the storyboard. To handle the tap on the delete button, the table view invokes
tableView(_:commit:forRowAt:) on its data source:

Step 2: View Controller ChangesModel

The implementation of tableView(_:commit:forRowAt:) looks up the item that should be
deleted (based on the index path) and asks the parent folder to remove it:

override func tableView(_ tableView: UITableView,
commit editingStyle: UITableViewCellEditingStyle,

forRowAt indexPath: IndexPath)

{

folder.remove(folder.contents[indexPath.row])

}

Note that we are not deleting the cell from the table view directly. This only happens
once we observe the model change.

The removemethod on Folder notifies the item that it has been deleted by calling
item.deleted(). It then removes it from the folder’s contents. Then it tells the store to
persist the data, including detailed information about the change it just made:

func remove(_ item: Item) {
guard let index = contents.index(where: { $0 === item }) else { return }
item.deleted()

contents.remove(at: index)

store?.save(item, userInfo: [

Item.changeReasonKey: Item.removed,

Item.oldValueKey: index,

Item.parentFolderKey: self
])

}

If the deleted item is a recording, the associated file is removed from the file system by
the call to item.deleted(). If it is a folder, it recursively removes all contained subfolders
and recordings.

Persisting the model objects and sending the change notification occurs in the call to the
store’s savemethod:

func save(_ notifying: Item, userInfo: [AnyHashable: Any]) {
if let url = baseURL, let data = try? JSONEncoder().encode(rootFolder) {
try! data.write(to: url.appendingPathComponent(.storeLocation))
// error handling ommitted

}

NotiĩcationCenter.default.post(name: Store.changedNotiĩcation,
object: notifying, userInfo: userInfo)

}

Step 3: View Controller ObservesModel Changes

In the construction section, we saw that the folder view controller sets up an observation
of the store’s change notification in viewDidLoad:

override func viewDidLoad() {
super.viewDidLoad()
// ...

NotiĩcationCenter.default.addObserver(self,
selector: #selector(handleChangeNotiĩcation(_:)),

name: Store.changedNotiĩcation, object: nil)
}

The call to save on the store from the previous step sends the change notification. In
response, this observation triggers and calls handleChangeNotiĩcation.

Step 4: View Controller Changes View

When the store change notification arrives, the view controller’s
handleChangeNotiĩcationmethod interprets it and makes the corresponding change in
the view hierarchy.

A minimalist handling of notifications might involve reloading the table data whenever
any type of model notification arrives. In general though, the correct handling of model
notifications involves properly understanding the data change described by the
notification. Accordingly, our implementation communicates the nature of the model
change — including the specific row that has changed and the type of change that has
occurred — through the notification’s userInfo dictionary.

In this example, handling the notification involves a call to
tableView.deleteRows(at:with:):

@objc func handleChangeNotiĩcation(_ notiĩcation: Notiĩcation) {
// ...

if let changeReason = userInfo[Item.changeReasonKey] as? String {
let oldValue = userInfo[Item.newValueKey]
let newValue = userInfo[Item.oldValueKey]
switch (changeReason, newValue, oldValue) {
case let (Item.removed, _, (oldIndex as Int)?):
tableView.deleteRows(at: [IndexPath(row: oldIndex, section: 0)],

with: .right)
// ...

}

} else {

tableView.reloadData()

}

}

Noticeably absent from this code: we have not updated any data on the view controller
itself. The folder value on the view controller is a shared reference directly to the object
in the model layer, so it is already up to date. After the above call to
tableView.deleteRows(at:with:), the table view will call the data source implementations
on the folder view controller and they will return the latest state of the data accessed
through the folder shared reference. In the MVC+VS chapter, we will look at an
alternative model layer with value types instead of objects.

We should also clarify that this notification handling relies on a shortcut: the model
stores items in the same lexically sorted order used for display. This is not ideal; the
model should not really know how its data will be displayed. A conceptually cleaner
implementation (that requires more work) would involve the model emitting set
mutation information (not array mutation information) and the notification handler
using its own sorting, combined with before and after states, to determine deleted
indices. In the chapter on MAVB, we keep sorting out of the model layer and move it into
the view binders.

This completes the “changing the model” event loop in MVC. Since we updated the UI
only in response to the change in the model (and not directly in response to the view
action), the UI will update correctly, even if the folder is removed from the model for
other reasons (for example, a network event), or if the change is rejected by the model.
This is a robust approach to ensure the view layer does not get out of sync with the
model layer.

Changing the View State

The model layer in MVC has its origins in typical document-based applications: any
state that is written to the document during a save operation is considered part of the
model. Any other state — including navigation state, temporary search and sort values,
feedback from asynchronous tasks, and uncommitted edits — is traditionally excluded
from the definition of the model in MVC.

In MVC, this “other” state — which we collectively call view state — does not have a
description in the pattern. In accordance with traditional object-oriented principles, any

object may have internal state and the object is not required to communicate changes in
that internal state to the remainder of the program.

Due to this internal treatment, view state does not necessarily follow any clear path
through the program. Any view or controller may include state, which it updates in
response to view actions. View state is handled as locally as possible: a view or view
controller can autonomously update its view state in response to a user event.

Most UIViews have internal state that they may update in response to view actions
without propagating the change further. For example, a UISwitchmay change from ON
to OFF in response to a user touch event, as follows:

Controller

Model

Sends an action Changes the view

Changes the model Observes the model
Changes its

internal state

View

Changes its
internal state

The event loop becomes one step longer if the view cannot change its state itself — for
example, when the label of a button should change after it’s tapped (as with our play
button) or when a new view controller is pushed onto the navigation stack in response to
the user tapping a table view cell.

Model

Changes the model Observes the model

Changes its
internal state

View

Controller

1

2

3Sends an action Changes the view

Changes its
internal state

The view state is still contained within one particular view controller and its views.
However, compared to a view changing its own state, we now get the chance to
customize the state change of a view (as with the play button title in the first example
below) or to make view state changes across views (exemplified by the second example
below of pushing a new folder view controller).

Example 1: Updating the Play Button

The play button in the play view controller changes its title from “Play” to “Pause” to
“Resume” depending on the play state. From the user’s perspective, when the button
says “Play,” tapping it changes it to “Pause”; tapping it again before playback ends
changes it to “Resume.” Let’s take a closer look at the steps Cocoa MVC takes to achieve
this.

Step 1: The Button Sends an Action to the View Controller

The play button connects to the play view controller’s playmethod using an IBAction in
the storyboard. Tapping the button calls the playmethod:

@IBAction func play() {
// ...

}

Step 2: The View Controller Changes Its Internal State

The first line in the playmethod updates the state of the audio player:

@IBAction func play() {
audioPlayer?.togglePlay()

updatePlayButton()

}

Step 3: The View Controller Updates the Button

The second line in the playmethod calls updatePlayButton, which directly sets the new
title of the play button, depending on the state of the audio player:

func updatePlayButton() {
if audioPlayer?.isPlaying == true {
playButton?.setTitle(.pause, for: .normal)

} else if audioPlayer?.isPaused == true {
playButton?.setTitle(.resume, for: .normal)

} else {
playButton?.setTitle(.play, for: .normal)

}

}

.pause, .resume, and .play are localized strings defined as static constants on String.

At this point, we’re already done, and the smallest number of components necessary
were involved in the process: the button sends the event to the play view controller, and
in turn, the play view controller sets the new title.

Example 2: Pushing a Folder View Controller

The folder view controller’s table view shows two kinds of items: recordings and
subfolders. When the user taps on a subfolder, a new folder view controller is configured
and pushed onto the navigation stack. Since we use a storyboard with segues to achieve

this, the concrete steps below only loosely relate to the steps in the diagram above.
However, the general principle stays the same.

Step 1: Triggering the Segue

Tapping a subfolder cell triggers a showFolder segue, as the cell is connected to the
folder view controller via a push segue in the storyboard. This causes UIKit to create a
new folder view controller instance for us.

This step is a variant of the target/action pattern. There’s more UIKit magic involved
behind the scenes, but the result is that the prepare(for:sender:)method on the
originating view controller gets called.

Steps 2 & 3: Conĩguring the New Folder View Controller

The current folder view controller gets notified by prepare(for:sender:) about the segue
that is about to occur. After we check the segue identifier, we configure the new folder
view controller:

override func prepare(for segue: UIStoryboardSegue, sender: Any?) {
guard let identiĩer = segue.identiĩer else { return }
if identiĩer == .showFolder {
guard
let folderVC = segue.destination as? FolderViewController,
let selectedFolder = selectedItem as? Folder

else { fatalError() }
folderVC.folder = selectedFolder

}

// ...

}

First, we check that the destination view controller has the right type and that we have
selected a folder. If either of these conditions doesn’t hold, it is a programming error and
we crash. If everything is present as expected, we set the subfolder on the new folder
view controller.

The storyboard machinery takes over the actual presentation of the new view controller.
After we configure the new view controller, UIKit pushes it onto the navigation stack (we

don’t need to call pushViewController ourselves). Pushing the view controller onto the
navigation stack causes the navigation controller to install the view controller’s view in
the view hierarchy.

Similar to the play button example, the UI event (selecting the subfolder cell) is handled
as locally as possible. The segue mechanism obscures the exact path of the event, but
nevertheless, from the perspective of our code, no other component but the originating
view controller is involved. The view state is implicitly represented by the involved
views and view controllers.

To share view state between different parts of the view hierarchy, we must find the
common ancestor in the view (controller) hierarchy and manage the state there. For
example, to share the play state between the play button label and the player, we store
the state in the play view controller. When we need a view state that’s used by almost all
components (for example, a Boolean value that captures whether or not our application
is in dark mode), we have to put it in one of the topmost controller objects (e.g. the
application delegate). However, in practice, it’s uncommon to put this view state in a
controller object at the top of the hierarchy, because that would require a
communication channel between each layer of the hierarchy. As such, most people opt
to use a singleton instead.

Testing
Automated tests come in a number of different forms. From smallest to largest
granularity, these include:

→ Unit tests (isolating individual functions and testing their behavior).

→ Interface tests (using interface inputs — usually functions — and testing the
result via interface outputs — usually different functions).

→ Integration tests (testing the program — or significant subsections — as a whole).

While interface and data-driven regression tests have been around for 40 years or more,
modern unit testing didn’t really start until the 1990s, and it took at least another decade
for unit testing to become common in applications. Even now, many apps have no
regular testing outside of human-driven tests.

It should not be surprising then that the Cocoa MVC pattern, which is more than 20
years old, was created without unit testing in mind. We can test the model however we
choose — since it is independent of the rest of the program — but that won’t help us test
user-facing state. We can use Xcode’s UI tests — automated scripts that run our entire
program and attempt to read the screen using the VoiceOver/Accessibility API — but
these are slow and prone to timing issues, and it’s difficult to extract precise results.

If we want to use exact code-level testing of the controller and view layers in MVC, the
only option available is writing integration tests. Integration tests involve constructing a
self-contained version of the app, manipulating part of it, and reading from other parts
to ensure results are propagated between objects as expected.

For the Recordings app, the tests require a store, so we construct one without a URL
(in-memory only) and add some test items (folders and recordings):

func constructTestingStore() -> Store {
let store = Store(url: nil)

let folder1 = Folder(name: "Child 1", uuid: uuid1)
let folder2 = Folder(name: "Child 2", uuid: uuid2)
store.rootFolder.add(folder1)

folder1.add(folder2)

let recording1 = Recording(name: "Recording 1", uuid: uuid3)
let recording2 = Recording(name: "Recording 2", uuid: uuid4)
store.rootFolder.add(recording1)

folder1.add(recording2)

store.placeholder = Bundle(for: FolderViewControllerTests.self)
.url(forResource: "empty", withExtension: "m4a")!

return store
}

The store.placeholder is a store feature used for testing only: if the URL is nil, this
placeholder will be returned any time Store.ĩleURL(for:) is invoked to get the audio file
for a recording. With the store constructed, we now need a view controller hierarchy that
uses this store:

func constructTestingViews(store: Store,
navDelegate: UINavigationControllerDelegate)

-> (UIStoryboard, AppDelegate, UISplitViewController,

UINavigationController, FolderViewController)

{

let storyboard = UIStoryboard(name: "Main", bundle: Bundle.main)
let navigationController =
storyboard.instantiateViewController(withIdentiĩer: "navController")

as! UINavigationController
navigationController.delegate = navDelegate

let rootFolderViewController = navigationController.viewControllers.ĩrst
as! FolderViewController

rootFolderViewController.folder = store.rootFolder

rootFolderViewController.loadViewIfNeeded()

// ...

window.makeKeyAndVisible()

return (storyboard, appDelegate, splitViewController,
navigationController, rootFolderViewController)

}

The above shows the construction of the master navigation controller and the root view
controller. The function goes on to similarly construct the detail navigation controller,
the play view controller, the split view controller, the window, and the app delegate — a
full user interface stack. Constructing all the way up to the window and then calling
window.isHidden = false is necessary, because otherwise numerous animated and
presented actions won’t occur.

Notice how the navigation controller’s delegate is set to the navDelegate parameter
(which will be an instance of the FolderViewControllerTests class that runs the tests) and
the root folder view controller’s folder is set to the testing store’s rootFolder.

We call the above construction functions from the test’s setUpmethod to initialize the
members on the FolderViewControllerTests instance. With that done, we can write our
tests.

Integration tests usually require some degree of configuring the initial environment
before an action is performed and the result is measured. With application integration
tests, measuring the result can range from trivial (accessing a readable property on one

of the objects in the configured environment) to very difficult (multi-step asynchronous
interactions with the Cocoa framework).

An example of a relatively easy test is testing the commitEditing action for deleting table
view rows:

func testCommitEditing() {
// Verify that the action we will invoke is connected

let dataSource = rootFolderViewController.tableView.dataSource
as? FolderViewController

XCTAssertEqual(dataSource, rootFolderViewController)

// Conĩrm item exists before

XCTAssertNotNil(store.item(atUUIDPath: [store.rootFolder.uuid, uuid3]))

// Perform the action

rootFolderViewController.tableView(rootFolderViewController.tableView,

commit: .delete, forRowAt: IndexPath(row: 1, section: 0))

// Assert item is gone afterward

XCTAssertNil(store.item(atUUIDPath: [store.rootFolder.uuid, uuid3]))

}

The above test verifies that the root view controller is correctly configured as the data
source, invokes the data source method tableView(_:commit:forRowAt:) directly on the
root view controller, and confirms that this deletes the item from the model.

When animations or potential simulator-dependent changes are involved, the tests get
more complicated. Testing that selecting a recording row in the folder view controller
correctly displays that recording in the split view’s detail position is the most complex
test in the Recordings app. The test needs to handle the difference between the split
view controller’s collapsed and uncollapsed states, and it needs to wait for potential
navigation controller push actions to complete:

func testSelectedRecording() {
// Select the row so `prepare(for:sender:)` can read the selection

rootFolderViewController.tableView.selectRow(at: IndexPath(row: 1, section: 0),

animated: false, scrollPosition: .none)
// Handle the collapsed or uncollapsed split view controller

if self.splitViewController.viewControllers.count == 1 {
ex = expectation(description: "Wait for segue")

// Trigger the transition

rootFolderViewController.performSegue(withIdentiĩer: "showPlayer",

sender: nil)
// Wait for the navigation controller to push the collapsed detail view

waitForExpectations(timeout: 5.0)

// Traverse to the `PlayViewController`

let collapsedNC = navigationController.viewControllers.last
as? UINavigationController

let playVC = collapsedNC?.viewControllers.last as? PlayViewController
// Test the result

XCTAssertEqual(playVC?.recording?.uuid, uuid3)

} else {
// Handle the uncollapsed state...

}

}

The expectation is fulfilled when the master navigation controller reports that it has
pushed a new view controller. This change to the master navigation controller takes
place when the detail view is collapsed onto the master view (as happens in a compact
display — i.e. every iPhone display except landscape on the iPhone Plus):

func navigationController(_ navigationController: UINavigationController,
didShow viewController: UIViewController, animated: Bool) {

ex?.fulĩll()

ex = nil
}

While these integration tests get the job done — the tests we’ve written for the folder
view controller cover roughly 80 percent of its lines and test all important behaviors —
this testSelectedRecording test reveals that correctly writing integration tests can
require significant knowledge about how the Cocoa framework operates.

Discussion
MVC has the advantage that it is the architectural pattern for iOS development with the
lowest friction. Every class in Cocoa is tested under MVC conditions. Features like
storyboards, which rely on heavy integration between the frameworks and classes, are
more likely to work smoothly with a program when using MVC. When looking on the

internet, you’ll find more examples following the MVC pattern than examples of any
other design pattern. Additionally, MVC often has the least code and the least design
overhead of all patterns.

As the most used of all the patterns we explore in this book, MVC also has the most
clearly understood shortcomings — in particular, MVC is associated with two common
problems.

Observer Pattern Failures

The first of these problems is when the model and view fall out of synchronization. This
occurs when the observer pattern around the model is imperfectly followed. A common
mistake is to read a model value on view construction and not subscribe to subsequent
notifications. Another common mistake is to change the view hierarchy at the same
time as changing the model, thereby assuming the result of the change instead of
waiting for the observation, even when the model might reject the change afterward.
These kinds of mistakes can cause the views to go out of sync with the model, and
unexpected behavior follows.

Unfortunately, Cocoa doesn’t provide any checks or built-in mechanisms to verify a
correct implementation of the observer pattern. The solution is to be strict in applying
the observer pattern: when reading a model value, it’s also necessary to subscribe to it.
Other architectures (such as TEA or MAVB) combine the initial reading and subscribing
into a single statement, making it impossible to make an observation mistake.

Massive View Controllers

The second problem associated with MVC — CocoaMVC in particular — is that it often
leads to large view controllers. View controllers have view layer responsibilities
(configuring view properties and presenting views), but they also have controller layer
responsibilities (observing the model and updating views), and they can end up with
model layer responsibilities (fetching, transforming, or processing data). Combined
with their central role in the architecture, this makes it easy to carelessly assign every
responsibility to the view controller, rapidly making a program unmanageable.

There’s no clear limit for how big a view controller can reasonably be. Xcode starts
showing obvious pauses when opening, browsing, and viewing Swift files of more than

2,000 lines, so it’s probably better to avoid anything near this length. Most screens
display 50 lines of code or less, so a dozen screens worth of scrolling start to make it
visually difficult to find code.

But the strongest argument against large view controllers isn’t the lines of code so much
as the amount of state. When the entire file is a single class — like a view controller —
any mutable state will be shared across all parts of the file, with each function needing to
cooperatively read and maintain the state to prevent inconsistency. Factoring the
maintenance of state into separate interfaces forces better consideration of data
dependencies and limits the potential amount of code that must cooperatively obey
rules to ensure consistency.

Improvements

Observer Pattern

For the base MVC implementation, we opted to broadcast model notifications using
Foundation’s NotiĩcationCenter. We chose this because we wanted to write the
implementation using basic Cocoa, with limited use of libraries or abstractions.

However, the implementation requires cooperation in many locations to correctly
update values. The folder view controller gets its folder value when the parent folder
view sets it during prepare(for:sender:):

guard
let folderVC = segue.destination as? FolderViewController,
let selectedFolder = selectedItem as? Folder

else { fatalError() }
folderVC.folder = selectedFolder

At a later time, the folder view controller observes notifications on the model to get
changes to this value:

override func viewDidLoad() {
super.viewDidLoad()
// ...

NotiĩcationCenter.default.addObserver(self,

selector: #selector(handleChangeNotiĩcation(_:)),

name: Store.changedNotiĩcation, object: nil)
}

And in the notification handler, if the notification matches the current folder, the folder
is updated:

@objc func handleChangeNotiĩcation(_ notiĩcation: Notiĩcation) {
// Handle changes to the current folder

if let item = notiĩcation.object as? Folder, item === folder {

let reason = notiĩcation.userInfo?[Item.changeReasonKey] as? String
if reason == Item.removed, let nc = navigationController {
nc.setViewControllers(nc.viewControllers.ĩlter { $0 !== self },
animated: false)

} else {
folder = item

}

}

// ...

It would be better to have an observing approach that didn’t have the timing gap
between the initial setting of the folder and the establishment of the observer in
viewDidLoad. It would also be better if there was only one location where the folder
needed to be set.

It is possible to use key-value observation (KVO) instead of notifications, but the need to
observe multiple different key paths in most cases (for example, observing the parent
folder’s children as well as the current child) prevents KVO from actually making
handling more robust. Since it also requires that every observed property be declared
dynamic, it is dramatically less popular in Swift than in Objective-C.

The simplest way to improve the observer pattern is to wrap NotiĩcationCenter and
implement the initial concept that KVO includes. This concept sends the initial value as
soon as the observation is created, allowing us to combine the concepts of set initial
value and observe subsequent values into a single pipeline.

This also allows us to replace both the viewDidLoad and the handleChangeNotiĩcation
with the following:

observations += Store.shared.addObserver(at: folder.uuidPath) {

[weak self] (folder: Folder?) in
guard let strongSelf = self else { return }
if let f = folder { // change
strongSelf.folder = f

} else { // deletion
strongSelf.navigationController.map {

$0.setViewControllers($0.viewControllers.ĩlter { $0 !== self },
animated: false)

}

}

}

It’s not dramatically less code, but the self.folder value is set in just one location (inside
the observation callback), so we can reduce the number of change paths in our code.
Furthermore, there’s no more need for dynamic casting in user code, and there’s also no
gap between the initial setting of the value and the establishing of the observation: the
initial value is not the real data but an identifier — the only way we need to access the
real data is through the observation callback.

This type of addObserver implementation has the advantage that it can be implemented
as an extension to the Store type without any changes to the store itself:

extension Store {
func addObserver<T: AnyObject>(at uuidPath: [UUID],
callback: @escaping (T?) -> ()) -> [NSObjectProtocol]

{

guard let item = item(atUUIDPath: uuidPath) as? T else {
callback(nil)
return []

}

let o = NotiĩcationCenter.default.addObserver(
forName: Store.changedNotiĩcation,

object: item, queue: nil) { notiĩcation in
if let item = notiĩcation.object as? T, item === item {

let reason = notiĩcation.userInfo?[Item.changeReasonKey] as? String
if reason == Item.removed {
return callback(nil)

} else {

callback(item)

}

}

}

callback(item)

return [o]
}

}

The store still sends the same notifications; we’re just subscribing to the notifications a
different way, preprocessing the notification data (like testing for the
Item.changeReasonKey), and handling other boilerplate code so that the work in each
view controller is simpler.

In the chapter on MVC+VS, we show how to take this approach further. MVC+VS is a
variant of MVC in which all model data is read using a similar pattern: we receive the
initial value and subsequent changes through the same callback.

TheMassive View Controller Problem

Very large view controllers often perform work unrelated to their primary role
(observing the model, presenting views, providing them with data, and receiving their
actions); or they should be broken into multiple controllers that each manage a smaller
section of the view hierarchy; or the interfaces and abstractions are failing to
encapsulate the complexity of the tasks in a program and the view controllers are
cleaning up the mess.

In many cases, the best way to approach this problem is to proactively move as much
functionality as possible into the model layer. Sorting, fetching, and processing of data
are common functions that end up in the controller because they’re not part of the
persistent state of the application, but they still relate to an application’s data and
domain logic and are better placed in the model.

The largest view controller in the Recordings app is the FolderViewController. It is
around 130 lines of code, making it far too small for us to see any significant problems.
Instead, we’ll take a brief look at some large view controllers from popular iOS projects
on GitHub. Please note, we are not trying to disparage these projects in any way; we are
simply using the open source nature of them to look at why a view controller might grow

to thousands of lines of code. Also be aware that the line-count numbers we’ll discuss
are generated by cloc, which ignores whitespace and comments.

Wikipedia’s PlacesViewController

The version of the file reviewed for this book is 2c1725a of PlacesViewController.swift.

This file is 2,326 lines long. The view controller includes the following roles:

1. Configuring and managing the map view, which displays results (400 lines)

2. Getting user location with the location manager (100 lines)

3. Performing searches and gathering results (400 lines)

4. Grouping results for display in the visible area of the map (250 lines)

5. Populating and managing the search suggestion table view (500 lines)

6. Handling the layout of overlays like the suggestion table view (300 lines)

This example demonstrates the classic trifecta of massive view controller causes:

1. More than one major view being managed (map view and suggestion table view).

2. Creating and executing asynchronous tasks (like fetching the user location),
although the view controller is only interested in the result of the task (in this
case, the user location).

3. Model/domain logic (searching and processing results) performed in the
controller layer.

We can simplify the view requirements in this scene by separating the major views into
their own, smaller controllers. They don’t even need to be instances of UIViewController
— they could just be child objects owned by the scene. The only work left in the parent
view controller might then be integration and layout (and complex layouts can easily be
factored out of the view controller as well).

We can create utility classes to perform asynchronous tasks — like getting user location
information — and the only code required in the controller would be the construction of
the task and the callback closure.

https://github.com/AlDanial/cloc
https://github.com/wikimedia/wikipedia-ios/blob/develop/Wikipedia/Code/PlacesViewController.swift

From an application design perspective, the biggest problem here is the model/domain
logic in the controller layer. This code lacks an actual model to perform searches and
gather search results. Yes, there is a dataStore object used to hold this information, but
it has no abstraction around it, so it is not helpful on its own. The view controller does
all the actual search and data processing itself — these tasks should be handled in
another location. Even work like the grouping of results for the visible area could be
performed by the model or a transformation object between the model and the view
controller.

WordPress’ AztecPostViewController

The version of the file reviewed for this book is 6dcf436 of AztecPostViewController.swift.

This file is 2,703 lines long. The view controller includes the following roles:

1. Constructing subviews in code (300 lines)

2. Auto Layout constraints and title placement (200 lines)

3. Managing the article publishing process (100 lines)

4. Setting up child view controllers and handling their results (600 lines)

5. Coordinating, observing, and managing input to the text view (300 lines)

6. Displaying alerts and the alert contents (200 lines)

7. Tracking media uploads (600 lines)

Media uploads is a domain service that could easily be moved into its own model layer
service.

Meanwhile, 75 percent of the remaining code could be eliminated by improving the
interfaces to other components in the program.

None of the models, services, or child view controllers that this AztecPostViewController
deals with can be used in a single line. Displaying an alert takes half a dozen lines in
multiple locations. Running a child view controller takes 20 lines of setup and 20 lines
of handling after completion. Even though the text view is the custom Aztec.TextView,
there are hundreds of lines in the view controller tweaking its behavior.

https://github.com/wordpress-mobile/WordPress-iOS/blob/develop/WordPress/Classes/ViewRelated/Aztec/ViewControllers/AztecPostViewController.swift

These are all examples where the view controller is being used to patch the behavior of
other components that are failing to complete their own jobs. Instead, these behaviors
should all be baked into the components where possible. When we can’t change the
behavior of a component, we can write a wrapper around the component rather than
putting this logic in the view controller.

Firefox’s BrowserViewController

The version of the file reviewed for this book is 98ec57c of BrowserViewController.swift.

This file is 2,209 lines long. The view controller includes more than 1,000 lines of
delegate implementations, including: URLBarDelegate, TabToolbarDelegate,
TabDelegate, HomePanelViewControllerDelegate, SearchViewControllerDelegate,
TabManagerDelegate, ReaderModeDelegate, ReaderModeStyleViewControllerDelegate,
IntroViewControllerDelegate, ContextMenuHelperDelegate, and
KeyboardHelperDelegate.

What are these and what do they do?

Basically, the BrowserViewController is the top-level view controller in the program, and
these delegate implementations represent lower-level view controllers using the
BrowserViewController to relay actions around the program.

Yes, it is the controller layer’s responsibility to relay actions around the program — so
this isn’t a case of model/domain responsibilities spilling out into the wrong layer — but
many of these delegate actions are unrelated to the view managed by the
BrowserViewController (they merely want to access other components or state stored on
the BrowserViewController).

Instead of putting this responsibility onto a view controller that already has plenty of
other responsibilities, these delegate callbacks could all be relocated onto a coordinator
or other abstract (non-view) controller dedicated to handling relays within the controller
layer.

https://github.com/mozilla-mobile/firefox-ios/blob/master/Client/Frontend/Browser/BrowserViewController.swift

Code Instead of Storyboards

Rather than using storyboards, we can choose to define our view hierarchy in code. This
change gives us more control over the construction phase, and one of the biggest
advantages is that we will have better control over dependencies.

For example, when using storyboards, there is no way to guarantee that all necessary
properties for a view controller are set in prepare(for:sender:). Recall that we’ve used two
different techniques for passing model objects: a default value (as in the folder view
controller), and an optional type (as in the play view controller). Neither of these
techniques guarantees that the object is passed; if we forget to do this, they silently
continue with either the wrong value or an empty value.

When we move away from storyboards, we gain more control over the construction
process, and we can let the compiler ensure that the necessary parameters are passed in.
Note that it is not necessary to completely dispose of storyboards. We could start by
removing all segues and performing them manually instead. To construct a folder view
controller, we can add a static method:

extension FolderViewController {
static func instantiate(_ folder: Folder) -> FolderViewController {
let sb = UIStoryboard(name: "Main", bundle: nil)
let vc = sb.instantiateViewController(withIdentiĩer: "folderController")
as! FolderViewController

vc.folder = folder

return vc
}

}

When we create a folder view controller using the instantiatemethod, the compiler helps
us and tells us we need to provide the folder; it is not possible to forget to provide it.
Ideally, instantiatewould be an initializer, but that’s only possible if we move away from
storyboards completely.

We can apply the same technique to view construction as well by adding convenience
initializers to view classes or writing functions to construct specific view hierarchies. In
general, eschewing storyboards allows us to use all language features in Swift: generics
(e.g. to configure a generic view controller), first-class functions (e.g. to style a view or set

callbacks), enums with associated values (e.g. to model exclusive states), and so on. At
the time of writing, storyboards don’t support these features.

Reusing Code with Extensions

To share code between view controllers, a common solution is to create a superclass
containing the shared functionality. A view controller then gains that functionality by
subclassing. This technique can work well, but it has a potential downside: we can only
pick a single superclass for our new class — for example, it’s not possible to inherit from
both UIPageViewController and UITableViewController. This technique also often leads to
what we call the god view controller: a shared superclass that contains all shared
functionality in the project. Such a class often becomes so complex that it decreases
maintainability.

Another way to share code between view controllers is by using extensions. Methods
that occur in multiple view controllers can sometimes be added as an extension on
UIViewController instead. That way, all view controllers gain that method. For example,
we added a convenience method to UIViewController that displays modal text alerts.

For an extension to be useful, it’s often necessary that the view controller has some
specific capabilities. For example, the extension might require that a view controller has
an activity indicator present, or that a view controller has certain methods available. We
can capture these capabilities in a protocol. As an example, we can share keyboard
handling code, resizing a view when the keyboard shows or hides. If we use Auto Layout,
we can specify that we expect the capability of having a resizable bottom constraint:

protocol ResizableContentView {
var resizableConstraint: NSLayoutConstraint { get }

}

Then we can add an extension to every UIViewController that implements this protocol:

extension ResizableContentViewwhere Self: UIViewController {
func addKeyboardObservers() {
// ...

}

}

Now, any view controller that conforms to ResizableContentView also gains the
addKeyboardObserversmethod. We can use the same technique in other cases where we
want to share code without subclassing.

Reusing Code with Child View Controllers

Child view controllers are another option for sharing code between view controllers. For
example, if we want to show a small player at the bottom of the folder view controller, we
can add a child view controller to the folder view controller so that the player logic is
contained and doesn’t clutter up the folder view controller. This is easier and more
maintainable than duplicating the code within the folder view controller.

If we have a single view controller with two distinct states, we could also separate it into
two view controllers (one for each state) and use a container view controller to switch
between the two child view controllers. For example, we could split up the play view
controller into two separate view controllers: one that shows the “No recording selected”
text, and another that displays a recording. A container view controller can then switch
between the two depending on the state. There are two advantages to this approach:
first, the empty view controller can be reused if we make the title (and other properties)
configurable. Second, the play view controller won’t have to deal with the case where the
recording is nil; we only create and display it when we have a recording.

Extracting Objects

Most large view controllers have many roles and responsibilities. Often, a role or
responsibility can be extracted into a separate object, although it’s not always easy to see
this refactoring. We find it helpful to distinguish between coordinating controllers and
mediating controllers (as defined by Apple). A coordinating controller is application
specific and generally not reusable (for example, almost all view controllers are
coordinating controllers).

A mediating controller is a reusable controller object, which is configured for a specific
task. For example, the AppKit framework provides classes like NSArrayController or
NSTreeController. On iOS, we can build similar components. Often, a protocol
conformance (such as the folder view controller conforming to UITableViewDataSource)
is a good candidate for a mediating controller. Pulling out these “conformances” into
separate objects can be an effective way to make a view controller smaller. As a first step,

https://developer.apple.com/library/content/documentation/General/Conceptual/CocoaEncyclopedia/Model-View-Controller/Model-View-Controller.html#//apple_ref/doc/uid/TP40010810-CH14-SW7

we can extract the table view’s data source in the folder view controller without making
modifications to the implementation of the methods:

class FolderViewDataSource: NSObject, UITableViewDataSource {
var folder: Folder

init(_ folder: Folder) {
self.folder = folder

}

func numberOfSections(in tableView: UITableView) -> Int {
return 1

}

func tableView(_ tableView: UITableView, numberOfRowsInSection section: Int)
-> Int

{

return folder.contents.count
}

func tableView(_ tableView: UITableView, cellForRowAt indexPath: IndexPath)
-> UITableViewCell

{

let item = folder.contents[indexPath.row]

let identiĩer = item is Recording ? "RecordingCell" : "FolderCell"
let cell = tableView.dequeueReusableCell(withIdentiĩer: identiĩer,
for: indexPath)

cell.textLabel!.text = "\((item is Recording) ? " " : " ") \(item.name)"

return cell
}

func tableView(_ tableView: UITableView,
commit editingStyle: UITableViewCellEditingStyle,

forRowAt indexPath: IndexPath)

{

folder.remove(folder.contents[indexPath.row])

}

func tableView(_ tableView: UITableView, canEditRowAt indexPath: IndexPath)

-> Bool

{

return true
}

}

Then, in the folder view controller itself, we set the table view’s data source to our new
data source:

lazy var dataSource = FolderViewDataSource(folder)

override func viewDidLoad() {
super.viewDidLoad()
tableView.dataSource = dataSource

// ...

}

We also need to take care to observe the view controller’s folder and change the data
source’s folder in response. At the price of some extra communication, we have
separated the view controller into two components. In this case, the separation doesn’t
have too much overhead, but when the two components are tightly coupled and need a
lot of communication or share a lot of state, the overhead might be so big that it only
makes things more complicated.

If we have multiple similar objects, we might be able to generalize them. For example, in
the FolderViewDataSource above, we could change the stored property from Folder to
[Item] (an Item is either a folder or a recording). And as a logical next step, we can make
the data source generic over the Element type and move the Item-specific logic out. This
means that cell configuration (through the conĩgure parameter) and deletion logic
(through the remove parameter) are now passed in from the outside:

class ArrayDataSource<Element>: NSObject, UITableViewDataSource {
// ...

init(_ contents: [Element],
identiĩer: @escaping (Element) -> String,

remove: @escaping (_ at: Int) -> (),

conĩgure: @escaping (Element, UITableViewCell) -> ()) {

// ...

}

// ...

}

To configure it for our folders and recordings, we need the following code:

ArrayDataSource(folder.contents,

identiĩer: { $0 is Recording ? "RecordingCell" : "FolderCell" },
remove: { [weak self] index in
guard let folder = self?.folder else { return }
folder.remove(folder.contents[index])

}, conĩgure: { item, cell in
cell.textLabel!.text = "\((item is Recording) ? " " : " ") \(item.name)"

})

In our small example app, we don’t gain much by making our code so generic. However,
in larger apps, this technique can help reduce duplicated code, allow type-safe reuse,
and make view controllers simpler.

Simplifying View Conĩguration Code

If the view controller is constructing and updating a lot of views, it can be helpful to pull
this view configuration code out. Especially in the case of “set and forget,” where there
isn’t two-way communication, doing this can simplify our view controller. For example,
when we have a complicated tableView(_:cellForRowAtIndexPath:), we can move some of
that code out of the view controller:

override func tableView(_ tableView: UITableView,
cellForRowAt indexPath: IndexPath) -> UITableViewCell

{

let item = folder.contents[indexPath.row]

let cell = tableView.dequeueReusableCell(withIdentiĩer: identiĩer,
for: indexPath)

cell.conĩgure(for: item) // Extracted
return cell

}

We can then move all that logic onto UITableViewCell or a subclass:

extension UITableViewCell {
func conĩgure(for item: Item) {
textLabel!.text = "\((item is Recording) ? " " : " ") \(item.name)"

}

}

In our case, extracting cell configuration made the view controller marginally simpler,
because the original code was just one line. However, if there is cell configuration code
that spans multiple lines, it might be worth factoring that code out. We can also use this
pattern to share configuration and layout code between different view controllers. As an
added benefit, it’s easy to see that conĩgure(for:) doesn’t depend on any of the state in
the view controller: all state is passed in through parameters, and as such, it’s easy to
test.

Conclusion
MVC is the simplest and most commonly used of the patterns we will discuss in this
book. The other application design patterns in this book all represent — to varying
degrees — a break from convention. Unless you know you want to choose a less
conventional path for your project, you should probably start your projects in MVC.

MVC is sometimes discussed in disparaging terms by programmers advocating different
architectural patterns. Claims against MVC include: view controllers aren’t testable,
view controllers grow too large and cumbersome, and data dependencies are difficult to
manage. However, after reading this chapter, we hope you’ve seen that while MVC has
its own challenges, it is possible to write clear, concise view controllers that include full
tests and cleanly manage their data dependencies.

Still, there are other ways to approach application design that alter where the challenges
lie. In the following chapters, we’ll show a number of alternative design patterns, each of
which solves the problems of application design in a different way. All of those patterns
will include ideas you can apply to MVC programs to solve specific problems
pragmatically or produce your own hybrid patterns or programming style.

Model-View-
ViewModel+
Coordinator

4

Model-View-ViewModel (MVVM) is a pattern that aims to improve upon MVC by moving
all model-related tasks (updating the model, observing it for changes, transforming
model data for display, etc.) out of the controller layer and into a new layer of objects
called view-models. View-models — in common iOS implementations — sit between the
model and the view controller:

View

View Controller

View-Model

Model

Sends an
action

Changes
the view

Changes the
view-model

Sends
presentation
changes

Changes
the model

Observes
the model

Changes its
internal state

Changes its
internal state

As with all good patterns, this isn’t just about moving code into a new location. The
purpose of the new view-model layer is twofold:

1. To encourage structuring the relationship between the model and the view as a
pipeline of transformations.

2. To provide an interface that is independent of the application framework but
substantially represents the views’ presentation state.

Together, these points address two of the biggest criticisms of MVC. The first reduces the
responsibilities of view controllers by moving model-related observation and
transformation tasks out of the controller layer. The second provides a clean interface to

a scene’s view state that can be tested independent of the application framework — as
opposed to MVC’s integrated testing.

To keep the view synchronized with the view-model, MVVM mandates the use of some
form of bindings, i.e. any mechanism designed to keep properties on one object in sync
with properties on another object. The view controller constructs these bindings
between properties exposed by the view-model and properties on views in the scene that
the view-model represents.

We’ll be using reactive programming to implement the bindings, as this is the
most common approach for MVVM on iOS. However, reactive programming is
not a default inclusion in Cocoa projects, and reactive code can be difficult
to read if you’re unfamiliar with it. Please see the section below, “A Quick
Introduction to Reactive Programming,” for help with the terms and concepts.

We’ve chosen to implement the MVVM variant of our example app using
reactive programming because we believe it’s putting MVVM’s best foot
forward. Furthermore, we consider reactive programming beneficial to learn
about irrespective of whether or not you end up using it in your code base.
That being said, we’ve included a section later on in this chapter that shows
how you can use MVVM with less reliance on reactive programming, or even
just with bindings based on Foundation’s key-value observing (KVO)
mechanism.

Additionally, the MVVM version of our example app introduces a coordinator
component. The coordinator is not a mandatory component of MVVM, but it helps
relieve the view controllers of two additional responsibilities: managing the
presentation of other view controllers, and mediating communication of model data
between view controllers. The coordinator is in charge of managing the view controller
hierarchy so that the view controllers and view-models only need to be concerned about
their particular scenes. The diagram of Model-View-ViewModel+Coordinator (MVVM-C)
looks like this:

Sends an
action

View

View Controller

View-Model

Changes
the view

Changes the
view-model

Sends
presentation
changes

Model

Changes
the model

Observes
the model

Coordinator

Sends events

Presents and dismisses
view controllers

Changes its
internal state

Changes its
internal state

In our example app, the coordinator is the delegate of view controllers, and view
controllers forward navigation actions directly to the coordinator. Some people prefer to
forward navigation actions to the view-model first, and then have the coordinator
observe the view-model for navigation events. The latter approach is useful if navigation
events are dependent on the current view state or model data. Moving the navigation
events from the view controller to the view-model also allows for easier testing of this
interplay. However, our example app wouldn’t have gained any practical advantage from
looping navigation events through the view-model, so we opted for the simpler solution.

Exploring the Implementation
The MVVM pattern can be seen as an elaborate version of MVC. Our implementation
adds two kinds of components to remove some of the view controller responsibilities:
coordinators take on navigation responsibilities, and view-models take on most of the
logic that was previously in the view controller. Despite this similarity between the two
patterns, there are parts of an MVVM implementation that may look radically different.

The primary reason for the difference in coding style is that communication between
the model and the view in MVVM is not a single observer pattern interface, as in MVC,
but rather is restructured as a data pipeline, a task which we implement by using
reactive programming. Reactive programming builds a data pipeline using a series of
transformation stages, which can look very different to building logic with Swift’s basic
control-flow statements (loops, conditions, method calls).

To limit confusion for those unfamiliar with reactive programming, we’re going to
summarize the important concepts in reactive programming before looking at how
construction, model changes, and view state changes are handled in MVVM.

A Quick Introduction to Reactive Programming

Reactive programming is a pattern for describing data flows between sources and
consumers of data as a pipeline of transformations. Data flowing through the pipeline is
treated as a sequence and is transformed using functions with names similar to some of
Swift’s sequence and collection functions, such asmap, ĩlter, and ĪatMap.

Let’s look at a quick example. Imagine we have a model object with an optional string
property. We want to observe the property and apply the observed values to a label.
Assuming the property is declared dynamic, we can observe it in a view controller’s
viewDidLoadmethod using KVO:

varmodelObject: ModelObject!
var obs: NSKeyValueObservation? = nil

override func viewDidLoad() {
super.viewDidLoad()

obs = modelObject.observe(\ModelObject.value) { [unowned self] obj, change in
if case let value?? = change.newValue {
self.textLabel.string = "Selected value is: \(value)"

} else {
self.textLabel.string = "No value selected"

}

}

}

Other than the need to unwrap two layers of optionals around change.newValue, it’s
fairly standard Cocoa programming; we observe the value, and when it changes, we
update the text label.

Using RxSwift for reactive programming, we could instead write this:

varmodelObject: ModelObject!
var disposeBag = DisposeBag()

override func viewDidLoad() {
super.viewDidLoad()

modelObject.valueObservable.map { possibleValue -> String in
if let value = possibleValue {
return "Selected value is: \(value)"

} else {
return "No value selected"

}

}.bind(to: self.textLabel.rx.text).disposed(by: disposeBag)
}

The differences might initially seem aesthetic:

→ Instead of observing the value property directly, we read a property named
valueObservable.

→ Instead of performing all the work in a single callback, we perform the purely
data-related transformation in the middle — on its own — using amap
transformation.

→ Instead of setting the textLabel.text directly, we set it at the end of the chain,
inside the bind(to:) call.

Why is this important?

Instead of having multiple places where the textLabel.text value is set, the text label is
referenced just once, at the end. Reactive programming asks us to start at the
destination — the subscriber of the data — and walk our way backward through the data
transformations to the original data dependencies — the observables. In doing this, it

keeps the three parts of a data pipeline — the observables, the transformations, and the
subscriber — separate.

The transformations are both the biggest benefit of reactive programming and the point
where the learning curve gets the steepest. You have probably usedmapwith Swift
sequences or optionals, and the RxSwift version works in a similar way. Other functions
in RxSwift that have Sequence equivalents include ĩlter (same in both), concat (similar
to append(contentsOf:)), skip and skipWhile (similar to dropFirst and dropWhile), and
take and takeWhile (similar to preĩx and preĩxWhile).

It is worth discussing the ĪatMapLatest transformation. This transformation observes
its source, and every time the source emits a value, it uses that value to construct, start,
or select a new observable. The values emitted by the new observable are emitted from
the ĪatMapLatest result. It might seem confusing, but it lets us subscribe to a second
observable based on the state emitted through a first observable.

It’s also worth mentioning some of the types in RxSwift:

→ Observable is a stream of values we can transform, subscribe to, or bind to a UI
element.

→ PublishSubject is an Observable, but we can also send values to it, which will be
emitted to observers.

→ ReplaySubject is like PublishSubject, except we can start sending before any
observers have connected, and new observers will receive any previously sent
values cached in the “replay” buffer.

→ Variable is a wrapper around a settable value and offers an Observable property so
we can observe the value each time it is set.

→ Disposable and DisposeBag are used to control the lifetime of one or more
subscriptions, respectively. When the disposable is deallocated or explicitly
disposed, the subscription ends, and all the observables that were part of the
subscription are released.

That’s plenty of information to absorb. Perhaps we should move on and look at MVVM.

Construction

MVVM’s approach to construction follows a pattern similar to MVC: the controller layer
has full knowledge of the structure of the program and uses this knowledge to construct
and connect all components. Relative to MVC, there are three key differences:

1. The view-model must be constructed.

2. Bindings between the view-model and views must be established.

3. The view-model (not the controller) owns the model.

To address the first difference, we chose to construct a default view-model within each
view controller:

class FolderViewController: UITableViewController {
let viewModel = FolderViewModel()
// ...

}

This particular arrangement is a simple, low-friction approach when using storyboards
and segues, since the view-model does not need to be set on the view controller during
segues or otherwise set after construction. The view-model is not configured with a
reference to a model object at construction; the model object has to be set on the
view-model at a later point.

In an alternative arrangement, the view-model on the view controller is declared as an
initially nil optional, and a fully configured view-model is set on the view controller at a
later point. We avoided this approach because not only did it fail to solve any data
propagation issues in the Recordings app, but it also added an optional to an otherwise
non-optional type. However, if we were to ignore storyboards entirely and use manual
view controller initialization, we could pass the view-model in as a parameter to the view
controller and achieve the best of both arrangements.

Connecting Views to Initial Data

In the MVVM-C pattern we’re using, it is the coordinator’s responsibility to set the model
objects on the view-models. The coordinator itself is a high-level controller object,
which is constructed in the application delegate as the final step in the startup process,

so it must ensure that any initially constructed view controllers are provided with data
during its construction:

@UIApplicationMain
class AppDelegate:
UIResponder, UIApplicationDelegate, UISplitViewControllerDelegate {

var coordinator: Coordinator? = nil

func application(_ application: UIApplication,
didFinishLaunchingWithOptions launchOptions:

[UIApplicationLaunchOptionsKey: Any]?)

-> Bool

{

let splitViewController = window!.rootViewController as! UISplitViewController
splitViewController.delegate = self
splitViewController.preferredDisplayMode = .allVisible

coordinator = Coordinator(splitViewController)

return true
}

// ...

}

In its own constructor, the coordinator ensures that the top-level view-models are
provided with their initial data:

ĩnal class Coordinator {
init(_ splitView: UISplitViewController) {
// ...

let folderVC = folderNavigationController.viewControllers.ĩrst
as! FolderViewController

folderVC.delegate = self
folderVC.viewModel.folder.value = Store.shared.rootFolder

// ...

}

// ...

}

The line folderVC.viewModel.folder.value = Store.shared.rootFolder is the most
important, as this is where the root FolderViewModel receives its data. It’s also the first
line of code using the RxSwift framework; the folder property on the folder view-model
is an RxSwift Variable:

class FolderViewModel {
let folder: Variable<Folder>
// ...

}

Changing a Variable’s value has two effects: the first is that the folder view-model’s
folder.value property will return the value we have set. The second is that any observers
of this variable will also receive the new value.

To explore how the views ultimately receive this data, we need to look at the
implementation of the folder view-model. To observe its folder variable, the view-model
constructs a dependent folderUntilDeleted observable on initialization:

// FolderViewModel

private let folderUntilDeleted: Observable<Folder?>

init(initialFolder: Folder = Store.shared.rootFolder) {
folder = Variable(initialFolder)

folderUntilDeleted = folder.asObservable()

// Every time the folder changes

.ĪatMapLatest { currentFolder in
// Start by emitting the initial value

Observable.just(currentFolder)

// Reemit the folder every time a non-delete change occurs

.concat(currentFolder.changeObservable.map { _ in currentFolder })
// Stop when a delete occurs

.takeUntil(currentFolder.deletedObservable)

// After a delete, set the current folder back to `nil`

.concat(Observable.just(nil))
}.share(replay: 1)

}

We added a comment to each line, so if you’re not familiar with reactive programming,
please read the comments for a step-by-step summary of this code. Reactive

programming builds logic from sequences of its own transformations. These
transformations encode significant logic in a highly efficient syntax, but needing to
learn the common reactive programming transformations adds a steep learning curve to
reading reactive programming code.

The gist of the code above is: we combine the folder observable with other
model-derived data observations that might affect the logic of our view. The result is a
folderUntilDeleted observable that will update correctly when the underlying folder
object is mutated and will set itself to nil if the underlying folder object is deleted from
the store.

The folderUntilDeleted observable is not observed directly by the view controller. The
purpose of the view-model is to transform all data into the correct format so it is ready to
be directly bound to the view. In this case, it means extracting the required text or other
properties from the folder object emitted by the folderUntilDeleted observable.

For example, the title displayed in the navigation bar at the top of the
FolderViewController is prepared in the FolderViewModel. Anytime the
folderUntilDeleted observable emits a new value, this observable emits a new value too:

// FolderViewModel

var navigationTitle: Observable<String> {
return folderUntilDeleted.map { folder in
guard let f = folder else { return "" }
return f.parent == nil ? .recordings : f.name

}

}

The observable output of this navigationTitle property is bound to the view controller’s
title by the following line in the FolderViewController’s viewDidLoadmethod:

class FolderViewController: UITableViewController {
override func viewDidLoad() {
super.viewDidLoad()
viewModel.navigationTitle.bind(to: rx.title).disposed(by: disposeBag)

// ...

}

}

Thus we have the full pipeline of data:

1. The coordinator sets the initial model objects on the view-model of each view
controller.

2. The view-model combines the set value with other model data and observations.

3. The view-model transforms the data into the precise format required for the view.

4. The view controller uses bind(to:) to connect these prepared values to each view.

Applying State Restoration Data

MVVM largely follows the same state restoration approach as MVC, except that the data
stored for each view controller comes from the view-model instead of the view controller
itself. Therefore, the implementations of encodeRestorableState and
decodeRestorableState on the folder view controller are almost identical to the MVC
versions:

// FolderViewController

override func encodeRestorableState(with coder: NSCoder) {
super.encodeRestorableState(with: coder)
coder.encode(viewModel.folder.value.uuidPath, forKey: .uuidPathKey)

}

override func decodeRestorableState(with coder: NSCoder) {
super.decodeRestorableState(with: coder)
if let uuidPath = coder.decodeObject(forKey: .uuidPathKey) as? [UUID],
let folder = Store.shared.item(atUUIDPath: uuidPath) as? Folder

{

self.viewModel.folder.value = folder
} else {
if var controllers = navigationController?.viewControllers,
let index = controllers.index(where: { $0 === self })

{

controllers.remove(at: index)

navigationController?.viewControllers = controllers

}

}

}

The only difference is that the code uses viewModel.folder.value instead of self.folder.
Otherwise, it’s identical to the MVC code.

Changing theModel

The event loop from view to model and back in MVVM-C follows a similar path through
the layers when compared to MVC, with the addition of the mediating view-model
inserted between the view controller and the model:

Changes its
internal state

Coordinator

Sends events

Presents and dismisses
view controllers

1

View

View Controller

View-Model

Model

6

2 5

3 4

Sends an
action

Changes
the view

Changes the
view-model

Sends
presentation
changes

Changes
the model

Observes
the model

Changes its
internal state

Below we’ll look at the implementation of the steps involved to propagate the deletion of
a folder from the table view to the model and back up to the view.

Step 1: Table View Sends Action

In our MVVM implementation, the table view’s data source is not configured in the
storyboard, because we use RxSwift’s table view extensions to provide the table view

with its data. Therefore, what normally would be a call to the data source’s
tableView(_:commit:forRowAt:)method is encapsulated as an event to the table view’s
modelDeleted observable.

Step 2: View Controller Changes View-Model

In MVVM, the view controller doesn’t call into the model layer itself. Instead, it
outsources this work to its view-model. As mentioned in the first step, we get notified
about table view deletions via Rx’smodelDeleted observable on the table view. We
subscribe to this observable and call the view-model’s deleteItemmethod:

// FolderViewController

override func viewDidLoad() {
// ...

tableView.rx.modelDeleted(Item.self)
.subscribe(onNext: { [unowned self] in
self.viewModel.deleteItem($0)

}).disposed(by: disposeBag)

}

Step 3: View-Model ChangesModel

Inside the view-model, the change is directly propagated to the model layer:

// FolderViewModel

func deleteItem(_ item: Item) {
folder.value.remove(item)

}

The removemethod on the Folder class removes the specified item from its children and
calls save on the store to persist the changes (this is identical to the MVC version):

// Folder

func remove(_ item: Item) {
guard let index = contents.index(where: { $0 === item }) else { return }
item.deleted()

contents.remove(at: index)

store?.save(item, userInfo: [

Item.changeReasonKey: Item.removed,

Item.oldValueKey: index, Item.parentFolderKey: self
])

}

Saving the changes triggers a model notification, which we’ll use in the next step.

Step 4: View-Model ObservesModel Changes:

As we outlined in the construction section above, the view-model observes its folder
variable for changes, and this is combined with the model notifications into
folderUntilDeleted. Whenever the folder’s contents change, the view-model needs to
update its representation of these contents that the table view binds to. This is done in
the folderContents observable:

// FolderViewModel

var folderContents: Observable<[AnimatableSectionModel<Int, Item>]> {
return folderUntilDeleted.map { folder in
guard let f = folder else {
return [AnimatableSectionModel(model: 0, items: [])]

}

return [AnimatableSectionModel(model: 0, items: f.contents)]
}

}

folderContents emits the current contents of the folder in a way that can be bound to the
table view, as we’ll see in the next step.

Steps 5 & 6: View Controller Observes View-Model and Updates the Views

In viewDidLoad, the view controller binds the view-model’s folderContents property to
the table view’s data source using RxSwift’s table view extensions (part of the
RxDataSources library):

// FolderViewController

override func viewDidLoad() {
// ...

viewModel.folderContents.bind(

https://github.com/RxSwiftCommunity/RxDataSources

to: tableView.rx.items(dataSource: dataSource)

).disposed(by: disposeBag)

}

This is all we have to do in order to keep the table view in sync with the underlying data.
Under the hood, Rx’s table view extensions take care of all the table view calls like
insertRows and deleteRows.

Changing the View State

In MVVM-C, part of the view state — the transient state of the user interface — is
implicit in the view and view controller hierarchy, while other parts are explicitly
represented by view-models.

In theory, a view-model is supposed to be a representation of the full state of the view
within a particular scene. However, in common practice, a view-model only represents
the view state affected by view actions. For example, while the current scroll position is
clearly view state, it’s usually not represented by the view-model; it’s neither dependent
on any view-model properties, nor do other parts of the view-model depend on it. This
makes the overall representation of view state in the view-model equivalent to the view
state that would typically be held by properties on a view controller subclass in MVC.

Below, we’ll look at the implementation details for two distinct examples of modifying
the view state:

1. Changing the title of the play button in response to tapping it.

2. Pushing a folder view controller in response to selecting a subfolder.

In the first example, we only change a property of an existing view (the button’s title),
whereas in the second example, we need to modify the view and the view controller
hierarchy.

Example 1: Updating the Play Button

If a view state change doesn’t affect the view controller hierarchy, the coordinator isn’t
involved. The view controller that receives the user action forwards it to the view-model,

and reactive bindings propagate necessary view updates from the view-model to the
views. This is the path taken in the first example of updating the play button’s title:

Model

Changes
the model

Observes
the model

Changes its
internal state

Coordinator

Sends events

Presents and dismisses
view controllers

1

View

View Controller

View-Model

5

2

3

4

Sends an
action

Changes
the view

Changes the
view-model

Sends
presentation
changes

Changes its
internal state

Step 1: The Button Sends an Action to the View Controller

The first step works the same as in the MVC variant of the example app: the play button
is connected to the playmethod on the play view controller via Interface Builder, so play
is called when the user taps the play button.

Step 2: The Play View Controller Changes the View-Model

The playmethod makes only a single call by sending a new event into the view-model’s
togglePlay property (a PublishSubject):

// PlayViewController

@IBAction func play() {

viewModel.togglePlay.onNext(())

}

Step 3: The Play View-Model Changes Its Internal State

The call to onNext on the view-model’s togglePlay property changes the audio player’s
state from playing to paused or vice versa. Whenever the state of the audio player
changes, a new value is sent into the view-model’s internal playState observable. From
this observable, we derive the playButtonTitle observable, which maps the possible
states to their respective button titles:

// PlayViewModel

var playButtonTitle: Observable<String> {
return playState.map { s in
switch s?.activity {
case .playing?: return .pause
case .paused?: return .resume
default: return .play
}

}

}

Steps 4 & 5: The Play View Controller Observes the View-Model and Updates the

View

In the play view controller’s viewDidLoad, we set up a reactive binding from the
view-model’s playButtonTitle observable to the play button’s title:

// PlayViewController

override func viewDidLoad() {
// ...

viewModel.playButtonTitle.bind(to: playButton.rx.title(for: .normal))
.disposed(by: disposeBag)

}

This binding observes the view-model’s play button title and propagates it to the actual
button view.

Example 2: Pushing a Folder View Controller

When we change the view controller hierarchy — as in this example — the coordinator
comes into play. The view controller receiving the user action delegates the work of
updating the view controller hierarchy to the coordinator:

View-Model

Model

Changes
the view

Changes the
view-model

Sends
presentation
changes

Changes
the model

Observes
the model

Changes its
internal state

Changes its
internal state

1

View

View Controller

2

3

Sends an
action

Coordinator

Sends events

Presents and dismisses
view controllers

Steps 1 & 2: The Folder View Controller Receives the Selection Action and Calls the

Coordinator

In the folder view controller’s viewDidLoad, we subscribe to the table view’s selection
using RxSwift’s table view extensions. When we receive a selection event, we forward it
to the folder view controller’s delegate (which is the coordinator):

// FolderViewController

override func viewDidLoad() {
// ...

tableView.rx.modelSelected(Item.self)
.subscribe(onNext: { [unowned self] in
self.delegate?.didSelect($0)

}).disposed(by: disposeBag)

}

Step 3: The Coordinator Pushes the New Folder View Controller

The coordinator’s didSelectmethod checks whether or not the selected item is a folder.
If so, it instantiates a new folder view controller from the storyboard and pushes it onto
the navigation stack:

extension Coordinator: FolderViewControllerDelegate {
func didSelect(_ item: Item) {
switch item {

case let folder as Folder:
let folderVC = storyboard.instantiateFolderViewController(
with: folder, delegate: self)

folderNavigationController.pushViewController(folderVC,

animated: true)
// ...

}

}

}

Similarly to MVC, the UIView/UIViewController hierarchy still implicitly represents the
view state. However, two tasks that view controllers usually handle are factored out: the
view-model transforms model values into the data needed by the views, and the
coordinator manages the flow of view controllers.

Testing
With MVC, we showed an integration testing approach. Considering the strong
integration between view controllers, view state, and views, this is the only practical
testing approach.

In an integration test, we don’t just test the internal logic of a component, but also the
connections to other components — and sometimes we even test those components.
Because an integration test contains extensive knowledge about the framework
(e.g. UIKit) and isn’t isolated, it can be hard to determine what causes a failing test.
Additionally, integration tests are harder to write using a test-first approach, because
they require extensive knowledge about all the components in the program.

MVVM changes this integrated nature by defining a clear interface — the view-model —
which is explicitly decoupled from the view layer. By testing this layer in isolation
(instead of testing the entire view controller and all connected views), we can minimize
the number of connected components we must test simultaneously.

However, MVVM interface tests and MVC integration tests are very different in scope,
structure, and detail. In general, integration tests cover more functionality, but they are
more difficult to write and maintain. Additionally, because setting up a testing scenario
is so difficult, integration tests typically test every property in the scenario in a single
test rather than narrowly testing single functions per test.

In MVVM, we usually only test the view-model using interface tests, while both view
controllers and views are tested using Xcode UI tests or through human-driven tests.
This means that any logic in the view controller isn’t tested using interface tests. In
addition, if we misunderstand how UIKit (or other APIs used in the view or view
controller) function, this won’t be covered in the interface tests.

Accordingly, MVVM usually includes rules that view controller code must be very simple
(to the point of being mindless). Additionally, where possible, the view controller must
use library-provided bindings. With these rules, there is ideally no need to test the view
controller because it doesn’t contain any of our own logic.

Exactly how much logic remains in the view controller ultimately rests in the
programmer’s hands. RxSwift (and other reactive programming frameworks) are
popular in iOS MVVM implementations because they come with platform-specific
binding libraries (for example, RxCocoa is the companion to RxSwift, providing bindings
to UIKit). These binding libraries remove a lot of code from view controllers, keeping
closer to the ideal of MVVM.

Test Setup

The setup for view-model interface tests uses the same test store construction used in
the MVC integration tests, but it doesn’t need to construct a view tree:

// FolderViewControllerTests

override func setUp() {
super.setUp()

(store, childFolder1, childFolder2) = constructTestingStore()

viewModel = FolderViewModel(initialFolder: childFolder1)

viewModel.folderContents.subscribe(onNext: { [weak self] in
self?.contentsObserved.append($0)

}).disposed(by: disposeBag)

viewModel.navigationTitle.subscribe(onNext: { [weak self] in
self?.titleObserved.append($0)

}).disposed(by: disposeBag)

}

The above code constructs the testing store, including references to some of the
contained folders; constructs a view-model for one of the contained folders; and then
immediately subscribes to two commonly used observables on the view-model. This
setup code shows a classic pattern in interface testing: construct the inputs, construct
the interface passing the inputs, and read the outputs from the interface.

Presentation Tests

Testing observables follows a common pattern: for one exposed observable on the
view-model, test initial conditions, perform an action, and test subsequent conditions
(optionally performing further actions and testing further conditions). The test for the
navigation title is an example of this pattern:

// FolderViewControllerTests

func testNavigationTitle() {
// Test initial conditions

guard titleObserved.count == 1 else { XCTFail(); return }

XCTAssertEqual(titleObserved[0], "Child 1")

// Perform an action

childFolder1.setName("Another name")

// Test subsequent conditions

XCTAssertEqual(titleObserved.count, 2)

XCTAssertEqual(titleObserved[1], "Another name")

// ... further actions omitted

}

In contrast, the MVC integration tests did not have a test specific to the navigation title.
Rather, the navigation title was tested as part of the testRootFolderStartupConĩguration
and testChildFolderConĩgurationAndLayout tests, which attempted to test all presented
properties of their respective folder views.

Action Tests

The only other type of tests are view-model action tests. These have a pattern similar to
observable tests: test initial conditions, perform an action, and test subsequent
conditions. Testing folder deletion is an example of this:

// FolderViewControllerTests

func testFolderDelete() {
// Test initial conditions

XCTAssertEqual(contentsObserved.count, 1)

// Perform an action

viewModel.deleteItem(childFolder2)

// Test subsequent conditions

XCTAssertEqual(contentsObserved.count, 2)

let sections = contentsObserved[1]
XCTAssertEqual(sections.count, 1)

XCTAssertEqual(sections[0].items.ĩrst?.uuid, uuid4)

}

Other than the fact that the action here is performed on the view-model and not the
store, this test has the same structure as the previous test.

Interface Tests vs. Integration Tests

Whereas most of the tests in MVC integration testing had a different structure —
following the scenario being tested — the tests in view-model interface testing are more
uniform. View integration tests require extensive knowledge about both how the view
hierarchy works and the handling of view effects that occur asynchronously. Meanwhile,
view-model tests only require knowledge of our own view-model and its interface and
rarely demand asynchronous testing.

For these reasons, view-model interface tests are widely preferred to MVC integration
tests. That said, integration tests cover more than interface tests. For example, in an
integration test, we can verify that the view-model is correctly bound to the view, and
that view actions are correctly sent to the view-model or model. Likewise, in an
integration test, we can test the behavior of the view controller that doesn’t depend on
the view-model (for example: view layout or interacting with other components).

The gap between the view-model and the views puts stronger pressure on apps to
include Xcode UI tests. Xcode UI tests overlap significantly with code-level integration
tests, so you might opt to omit them if you have thorough integration tests. However, if
you’re relying on view-model interface tests to test your application logic, the pressure to
also include UI tests is much higher.

Discussion
At first glance, MVVM-C looks like a more complex pattern than Cocoa MVC, as the
view-model adds another layer to manage. At the implementation level though, the code
can become simpler if you stick to the pattern consistently. Alas, simpler doesn’t
necessarily mean easier; until you’re familiar with common transformations, reactive
code can be difficult to write and frustrating to debug. On the bright side, the carefully
structured data pipelines are often less prone to error and easier to maintain in the long
run.

By moving model observing and other presentation and interaction logic into an
isolated class structured around data flow, MVVM addresses the problems associated

with the unregulated interaction of state in MVC view controllers. Since this is the most
significant problem in MVC, exacerbated when Cocoa view controllers grow overlarge,
this change goes a long way toward mitigating the massive view controller problem in
MVC. But there are other ways that view controllers (and view-models) can grow large,
so refactoring is still necessary on an ongoing basis.

Another problem commonly encountered in MVC — the model and view getting out of
sync because the observer pattern isn’t applied strictly — is addressed by reactive
bindings that bind view-model properties to view properties. Bindings solve this
because they unify the code paths responsible for the initial configuration of views and
their subsequent updates.

The introduction of reactive programming isn’t without its drawbacks though: it is one
of the biggest obstacles to understanding and writing an MVVM app like the Recordings
application. Reactive programming frameworks come with a steep learning curve, and it
takes a while to adjust to this style of programming. While the idea of reactive
programming is conceptually elegant, reactive programming frameworks rely on highly
abstract transformations and large numbers of types, misuse of which can leave your
code unparseable by humans.

MVVMwith Less Reactive Programming
Reactive programming is a technique with its own set of tradeoffs that are more
attractive to some and less so to others. For some programmers then, the reliance of
MVVM on this technique presents a disincentive to using the pattern. Therefore, in this
section we will look at using the MVVM pattern with less or no use of reactive
programming.

In the original MVVM-C implementation, we used reactive programming within the
view-model and as a binding between the view-model’s interface and the views. Now
we’ll explore two variants: first we’ll look at a view-model without any internal reactive
programming, and then we’ll look at an alternative to reactive bindings for updating the
views when the view-model changes.

Implementing a View-Model without Reactive

Programming

For this variant, we’ll refactor the folder view-model to function without any internal
use of reactive programming. We want to keep the same view-model interface we
previously had — including the exposed observables for the navigation title and the
table view’s contents. This allows us to keep using reactive bindings in the view
controller to bind the view-model’s outputs to the corresponding views.

In the original implementation, the exposed observables were implemented in terms of
other, internal observables. For example, the navigationTitle observable was created by
mapping over the folderUntilDeleted observable:

// FolderViewModel

var navigationTitle: Observable<String> {
return folderUntilDeleted.map { folder in
// ...

}

}

Since we want to get rid of internal observables like folderUntilDeleted, we have to create
the exposed observables differently. For the navigation title, we create a private
ReplaySubject— through which we can pass in new values — and expose it to the
outside world as an observable:

// FolderViewModel

var navigationTitle: Observable<String> { return navigationTitleSubject }
private let navigationTitleSubject = ReplaySubject<String>.create(bufferSize: 1)

The folderContents observable, which is used to provide the table view with its data, is
refactored in the same way.

The next step is to observe the model layer for changes. Then, we react to them by
sending new values into the exposed observables if the change affects the data the
view-model is serving for display. We do this by observing the store’s change
notification, just as in the MVC implementation of the example app:

// FolderViewModel

init() {
NotiĩcationCenter.default.addObserver(self,
selector: #selector(handleChangeNotiĩcation(_:)),

name: Store.changedNotiĩcation, object: nil)
}

The initializer sets up the observation that invokes the handleChangeNotiĩcation
method for every change in the underlying data. Within this method, we check whether
or not the change affects the parent folder of the displayed content. If so, we have to
handle two cases: either the folder was deleted or it was changed (e.g. its title). If it’s the
former, we send empty values into the observables. If it’s the latter, we just reset the
view-model’s folder property:

// FolderViewModel

@objc func handleChangeNotiĩcation(_ notiĩcation: Notiĩcation) {
if let f = notiĩcation.object as? Folder, f === folder {
let reason = notiĩcation.userInfo?[Item.changeReasonKey] as? String
if reason == Item.removed {
navigationTitleSubject.onNext("")

folderContentsSubject.onNext([

AnimatableSectionModel(model: 0, items: [])

])

} else {
folder = f

}

}

// ...

}

If the change was not a delete, we reset the folder property to trigger its property
observer:

// FolderViewModel

@objc func handleChangeNotiĩcation(_ notiĩcation: Notiĩcation) {
// ...

if let f = notiĩcation.userInfo?[Item.parentFolderKey] as? Folder,
f === folder

{

folder = f

}

}

The property observer on the folder property will send the latest values into the exposed
observables:

// FolderViewModel

var folder: Folder! {
didSet {
let newTitle = folder.parent == nil ? .recordings : folder.name
navigationTitleSubject.onNext(newTitle)

folderContentsSubject.onNext([

AnimatableSectionModel(model: 0, items: folder.contents)

])

}

}

For a simple view-model like this, we can express the internal logic easily without using
reactive pipelines. If the view-model is more complex — especially if it has to handle
more internal state — reactive programming has more opportunities to shine by making
the implementation more robust. The full code of the view-model from this section can
be found on GitHub.

View-Models with Key-Value Observing

After removing Rx from the implementation of a view-model in the previous section, we
now go one step further and look at how we can bind a view-model to views without
using Rx’s bindings at all. For this variant, we refactor the play view-model and play
view controller to use KVO-based bindings.

First, we change all Rx observable properties on the play view-model to be to be
observable through KVO by adding the@objc dynamic keywords:

// PlayViewModel

@objc dynamic var navigationTitle: String? = ""
@objc dynamic var hasRecording = false
@objc dynamic var noRecording = true
@objc dynamic var timeLabelText: String? = nil

https://github.com/objcio/app-architecture/blob/master/Recordings-MVVM-C-less-rx/Recordings/FolderViewModel.swift

@objc dynamic var durationLabelText: String? = nil
@objc dynamic var sliderDuration: Float = 1.0
// ...

Now we can use the code from the original MVC implementation of the play view
controller to update these properties whenever the selected recording or the play state
changes. The only difference is that we set the new values on the KVO observable
properties, whereas the original implementation set the values on the views directly. For
example, we used the following method in the MVC play view controller to update the
player’s progress views:

// PlayViewController (MVC variant)

func updateProgressDisplays(progress: TimeInterval, duration: TimeInterval) {
progressLabel?.text = timeString(progress)

durationLabel?.text = timeString(duration)

progressSlider?.maximumValue = Float(duration)

progressSlider?.value = Float(progress)

updatePlayButton()

}

In the KVO-based play view-model, we can reuse the above code like this:

// PlayViewModel (KVO-based)

func updateProgressDisplays(progress: TimeInterval?, duration: TimeInterval?) {
timeLabelText = timeString(progress ?? 0)

durationLabelText = timeString(duration ?? 0)

sliderDuration = Float(duration ?? 0)

sliderProgress = Float(progress ?? 0)

updatePlayButton()

}

The play view controller’s task is to observe the relevant properties on the view-model
using KVO and to forward their values to the respective view properties. For this, we use
Swift 4’s key-path-based KVO API to implement a simple bindmethod:

extension NSObjectProtocolwhere Self: NSObject {
func observe<Value>(_ keyPath: KeyPath<Self, Value>,
onChange: @escaping (Value) -> ()) -> NSKeyValueObservation

{

return observe(keyPath, options: [.initial, .new]) { _, change in
guard let newValue = change.newValue else { return }
onChange(newValue)

}

}

func bind<Value, Target>(_ sourceKeyPath: KeyPath<Self, Value>,
to target: Target,

at targetKeyPath: ReferenceWritableKeyPath<Target, Value>)

-> NSKeyValueObservation

{

return observe(sourceKeyPath) { target[keyPath: targetKeyPath] = $0 }
}

}

The observe(_:onChange:) is a wrapper around the native KVO API. We can store the
returned NSKeyValueObservation in a property on the view controller to couple the view
controller’s lifetime to the lifetime of its observations. On top of that, we’ve built the
bind helper method, which observes a property on one object and sets the new values on
another object’s property automatically. Note that we’ve used the .initial option for the
observation: this means that the observer will be called back immediately, unifying the
code for setting the initial value and reacting to subsequent changes.

In the play view controller’s viewDidLoadmethod, we use the binding helper from above
to bind the view-model’s properties to the views, just as we did with Rx’s bindings:

// PlayViewController

var observations: [NSKeyValueObservation] = []

override func viewDidLoad() {
super.viewDidLoad()
observations = [

viewModel.bind(\.navigationTitle, to: navigationItem, at: \.title),

viewModel.bind(\.hasRecording, to: noRecordingLabel, at: \.isHidden),

viewModel.bind(\.noRecording, to: activeItemElements, at: \.isHidden),

viewModel.bind(\.timeLabelText, to: progressLabel, at: \.text),

viewModel.bind(\.durationLabelText, to: durationLabel, at: \.text),

viewModel.bind(\.sliderDuration, to: progressSlider, at: \.maximumValue),

viewModel.bind(\.sliderProgress, to: progressSlider, at: \.value),

viewModel.observe(\.playButtonTitle) { [playButton] in

playButton!.setTitle($0, for: .normal)
},

viewModel.bind(\.nameText, to: nameTextField, at: \.text)

]

}

This KVO-based version of the play view-model is almost identical to the play view
controller from the MVC variant of the app. The main difference is that the view-model
sets the display data on observable properties, whereas the original play view controller
sets it directly on the views.

In this approach, we still gain the isolated testability of view-models without depending
on a large reactive framework. However, we lose a lot of convenience provided by Rx’s
bindings, e.g. when working with table views. In the Rx-based MVVM implementation,
we used Rx’s data source extensions to drive table view animations without any code of
our own. With simple KVO-based bindings, we would have to come up with our own
mechanism to drive fine-grained table view updates.

Lessons to Be Learned
Even if your code base doesn’t follow the MVVM pattern, there are insights that can be
applied to Cocoa MVC as well.

Introducing Additional Layers

MVVM offers lessons about abstractions that can be applied to any code base. In
particular, we can construct data pipelines, which transform abstract data (from the
model) into specific data (for the view). In MVVM, the view-model is a single pipeline
between the model and the view controller. However, we can apply this pattern to other
parts of our program as well. Here are some examples of pipelines between different
components:

→ App-model— takes model data (e.g. whether or not there are any saved user
credentials) and combines it with system service information (e.g. whether or not
the network is available) and offers this information as observables to be used by
other view-models. When interaction with system services is not required, an

app-model might be better represented as a settings-model (which is not a
combining or transforming model, but rather a standard model layer object).

→ Session-model— tracks details about the current login session and might need to
sit between view-models and the primary model or the other interface that
handles network requests.

→ Flow-model— a model-like version of a coordinator that models navigation state
as data and can combine the navigation state with model data to provide
observable model data directly to view-models.

→ Use case— any kind of interface or model that prepares a slice of the primary
model and simplifies performing actions. A use case is similar to a view-model,
but it isn’t tied to a single view controller and can be passed or shared between
view-models or offer reusable functionality within multiple view-models. Any
time an app has multiple views that display the same underlying data, we can use
a common use case object to simplify fetching from the model and writing back
to the model.

Most large programs eventually evolve to include abstractions like these. We suggest
you do not introduce additional layers prematurely. Evaluate carefully whether the
change makes your code simpler (i.e. easier to understand), less prone to casual errors,
and easier to maintain. There’s no point to additional abstractions if they don’t improve
your ability to write new code.

Coordinators

Coordinators are a pattern independent of the MVVM architecture. A coordinator can be
applied to Cocoa MVC apps as well in order to alleviate view controllers from one of their
responsibilities, and to decouple them. Without coordinators, a view controller usually
presents other view controllers — by pushing them onto the navigation stack, by
presenting them modally, etc. When using a coordinator, a view controller does not
present other view controllers. Instead, it calls methods on the coordinator.

A similar separation can be achieved without introducing a separate coordinator object.
You can also draw a strict separation between view controllers managing the
presentation of other view controllers and view controllers managing the UI. For more
details on this variation of the coordinator pattern, please refer to Dave DeLong’s blog
series, “A Better MVC.”

https://davedelong.com/blog/2017/11/06/a-better-mvc-part-1-the-problems/
https://davedelong.com/blog/2017/11/06/a-better-mvc-part-1-the-problems/

Data Transformation

Another lesson to be learned from MVVM is the benefit of pulling data transformation
logic out of the view controller. One responsibility of the controller layer in Cocoa MVC
is to transform the model data into the display data that’s needed to configure the views.
Often that simply means transforming strings, numbers, or dates on a model object into
their displayable forms. Even in simple cases, pulling out this code cleans up the view
controller and increases testability at the same time.

The benefits become more apparent when data transformation involves more logic that’s
more complex than simple formatting operations, e.g. when your views rely on
information of what has changed. You might have to compare or diff new data against
old data or integrate data from several model objects for display. All these operations
can be cleanly separated from the rest of the view management code.

Networking

5

In the previous two chapters, we examined different aspects of the MVC and MVVM-C
patterns: how to construct them, how they handle changes to the model, and how they
manage view state. But the example app we’ve built doesn’t yet include a networking
layer, so in this chapter, we’ll discuss how networking fits into the app.

Based on the MVC implementation, we wrote two variants of our sample app that add
networking support. The first variant — controller-owned networking— essentially
removes the model layer and lets the view controllers handle network requests. The
second variant —model-owned networking— retains the model layer of the MVC version
and adds a networking layer beneath it.

The controller-owned networking version fetches its data directly from the network
instead of from a local store. The data from the network is not persisted; instead, the
view controller caches it in memory as view state. As such, this version of the app only
works with a network connection.

Compared to the approach that shares data via the model, the controller-owned
networking approach makes it difficult to share data between view controllers, since
they operate largely independent of each other. New data has to be actively propagated
to other dependent view controllers, whereas in model-owned networking, these view
controllers instead observe changes in the model. The manual propagation makes it
much more difficult to ensure data consistency across the entire app. This shortcoming
is addressed in the second networked variant.

The model-owned networking version connects to the same server as the
controller-owned version, but the model layer from the base MVC version remains
mostly unchanged and serves as an offline cache for the data from the network.
Additionally, the model now also triggers and manages network requests, using their
results to update the model as needed. Changes in the model are picked up by the
controllers using the observer pattern, just as in the base version without networking.

The main distiction we want to highlight in this chapter is not the online/offline divide,
but rather whether networking is owned by the controller layer or by the model layer.
The offline capability of the model-owned networking variant is just a byproduct of the
existing model layer. In theory, the controller-owned networking version could also
work offline (although it arguably would be much harder to implement correctly), or the
store in the model-owned networking variant could just serve as an in-memory cache.

Both the controller-owned networking and model-owned networking versions of the
app are available on GitHub. Each version includes a Mac companion app that acts as
the server for the iOS app.

Networking Challenges
Regardless of which architecture is used, there are a number of unique challenges when
adding network support to an app, including the following:

1. Networking adds an additional source of failure; any attempt to fetch data from
the network can fail for a range of reasons. We have to plan for handling these
failure cases gracefully, and often it’s necessary to build additional UI to display
these errors.

2. Consistently observing data over the network is considerably more difficult than
observing data locally, and this often results in manually triggered refresh cycles
instead.

3. Networking introduces the possibility of multiple clients updating the same data,
leading to potential conflicts. Data on the network might change independently
of our application. References to resources might be invalidated without
notification. Two clients might update the same object, forcing the server to
choose which should prevail and how the resolution of the conflict should be
reported to each client.

In this book, we mostly ignore these issues, since they’re not specific to any architecture.
Instead, in this chapter, we focus on how networking fits into the architectural patterns
discussed thus far.

Controller-Owned Networking
With controller-owned networking, the view controllers are in charge of network
requests. They also own the data loaded by these requests. In turn, this means the app
doesn’t have a model layer: each view controller manages its own data.

Controller-owned networking is an easy “ad hoc” approach of adding networking to an
app, and it gives quick results. While we’d generally caution against using this technique,

https://github.com/objcio/app-architecture/tree/master/Recordings-controller-owned-networking
https://github.com/objcio/app-architecture/tree/master/Recordings-model-owned-networking

it has some valid use cases (which we’ll discuss in more detail later on), and it’s a
prevalent pattern in many code bases. Almost every developer has written code like this
at one point or another, which is why we wanted to include the controller-owned
networking approach in the discussion.

Fetching Initial Data

The first task for a newly presented view controller is to fetch its data. In the
controller-owned networking approach, this means making a network request and
configuring the views once the data comes back.

In our controller-owned networking app, each view controller only maintains an
in-memory cache of previously fetched data, so we definitely have to perform a refetch
when the app launches. For example, the folder view controller now has to load the
contents of the folder it’s supposed to display. We trigger this reload from viewDidLoad:

// FolderViewController

override func viewDidLoad() {
// ...

reload()

}

The reloadmethod performs a fetch if the status of the new folder isn’t already loading.
To keep track of this state, we added a state property to the Folder type. This property
indicates whether the contents are unloaded, currently loading, or loaded:

struct Folder {
enum State {

case unloaded
case loaded
case loading

}

var state: State
// ...

}

Contrary to the MVC version of the sample app, the controller-owned
networking variant uses structs to represent folders and recordings (similar to
the MVC+VS and TEA variants). We chose this approach because it emphasizes
the nature of the data cached in memory: it’s a momentary, local snapshot
from the time of the last network request — it will never be updated, unless we
make another request.

In reload, we check for the folder’s state to be unloaded and make a network request to
fetch the folder’s contents:

// FolderViewController

@objc func reload() {
guard folder.state != .loading else { return }

folder.state = .loading

refreshControl?.beginRefreshing()

task = URLSession.shared.load(store!.contents(of: folder)) { result in
self.refreshControl?.endRefreshing()
guard case let .success(contents) = result else {
dump(result) // TODO production error handling

return
}

self.folder.contents = contents
self.folder.state = .loaded

}

}

First, we set the folder’s state to .loading to prevent requesting the same data again while
the request is in flight. Then we perform the request, update the folder’s contents, set its
state to .loaded, and reload the table view. In between, we also update the state of the
table view controller’s refresh control.

The loadmethod on URLSession is a custom extension that takes a resource struct,
which describes the network request to be performed (we discussed this approach in
more detail in the first Swift Talk episode). This wrapper around URLSession doesn’t
affect the event flow discussed here — using either URLSession directly or any other
networking abstraction would result in the same steps.

https://talk.objc.io/episodes/S01E01-tiny-networking-library

The logic above for loading data from the network is much more complicated than the
logic for loading the same data from a local store (despite our incomplete
implementation, e.g. in terms of error handling). This puts additional responsibilities on
view controllers, which already have to fulfill many tasks, such as managing their views
and interacting with the application framework.

Making Changes

Unlike in the base MVC version, the controller-owned networking variant of our app
doesn’t have a model layer; we no longer have a store class that manages and persists
local data. Instead, all data in our app is transient, i.e. it isn’t persisted when the app
quits. Rather, the task of persisting data has been entirely outsourced to the server.
Therefore, making a change to the data is now an asynchronous task performed over the
network. To illustrate how this affects our code, we’ll look at the steps required to delete
a folder:

View

Controller

Server

Sends an action Changes the view

Makes a request Sends a response

1

2 3

4

Step 1: Table View Triggers an Action on the View Controller

This works just like in MVC: the delete button triggers the table view’s data source
method, tableView(_:commit:forRowAt:).

Step 2: Controller Makes a Network Request

Within this data source method, we first make sure that we’re dealing with a delete event,
and if so, we get the item to be deleted. The deletion code differs for folders and
recordings, but we’ll only follow the path for folders here:

override func tableView(_ tableView: UITableView,
commit editingStyle: UITableViewCellEditingStyle,

forRowAt indexPath: IndexPath)

{

guard editingStyle == .delete else { return }
let item = folder.contents[indexPath.row]

switch item {

case .folder:
// Perform request...

}

}

The actual deletion is a network request:

URLSession.shared.load(store.change(.delete, item: item)) { result in
guard case .success = result else {
dump(result) // TODO production error handling

return
}

self.deleteItem(item: item)
}

Note that we don’t change our cache until we receive the response from the web service.
This means that the changes are transactional: only when we get a web service response
that deletion succeeded do we delete the data from the cache (and from the view).

In a production app, we’d have to take care of at least two additional tasks: properly
handling network errors, and giving the user some indication of the deletion being in
progress. Currently, the folder just disappears after the network request has come back,
which might be almost instantaneously or take a few seconds, depending on the
connection. We’re omitting these tasks in this example for the sake of brevity.

Steps 3 & 4: Controller Updates Its Data and the Table View

Within the network callback, the view controller’s deleteItemmethod gets called. This
method performs two tasks. It removes the deleted folder from the view controller’s
cached data, and it removes the corresponding row from the table view:

func deleteItem(item: Item) {
guard let index = folder.contents.index(where: { $0.uuid == item.uuid })
else { return }

folder.contents.remove(at: index)

tableView.deleteRows(at: [IndexPath(row: index, section: 0)], with: .automatic)

}

At this point, the steps for deleting an item have been completed. Aside from the
asynchronous nature of this operation, the main difference to the base MVC version is
that we update the table view actively in response to the user deleting a specific row.
Whereas in the base version, we instructed the store to remove a particular item and the
table view updated itself in response to a change notification from the store, no such
mechanism exists in the controller-owned networking version.

Discussion

We stated earlier in this chapter that we don’t generally recommend using the
controller-owned networking approach for most apps. However, it’s worthwhile to
explore the tradeoffs of this approach in more detail to understand in which specific
situations controller-owned networking is a viable approach and in which situations it
isn’t.

Since the view controllers own the data fetched from the network, this approach lacks a
model layer. This means that the data owned by the view controllers is essentially view
state. Locally managed view state can work fine so long as no other part of an
application is dependent on it. As soon as the view state needs to be shared between
view controllers, we usually create an object (outside of the view controller hierarchy)
that owns this state and allows it to be changed and observed.

Applying this reasoning to the case of locally cached data from the network in a view
controller, we can draw the following conclusion: if any of the data loaded from the
network by a view controller needs to be shared with another part of the application, we

necessarily reintroduce a model layer. If the data is only used locally, then, in principle,
we could get away with building an application without a model layer, i.e. using the
controller-owned networking approach.

That being said, there are a few other issues to consider. First, even though
controller-owned networking might be a workable approach at the moment, we should
also consider if this might change in the near future. Often, the necessity to share data
across an application arises when its feature set and its complexity grows. Since a
model-owned networking approach works just as well for simple apps, we might opt to
use the more future-proof approach from the beginning.

Second, controller-owned networking puts a slew of new responsibilities on view
controllers, including making network requests, handling the results, and handling
network failures. Since view controllers usually have enough responsibilities already, we
recommend not placing all this code within the view controller, but rather factoring it
out into some sort of network service. This could consist of simple functions or be
implemented as a web service class that handles the interaction with the server. Note
that this network service is not what we’d call a model layer: it’s purely a wrapper around
the task of making requests and it doesn’t own the resulting data.

Next, we’ll take a look at a model-owned networking version of the example app and
examine how it compares to the controller-owned networking version.

Model-Owned Networking
Contrary to the controller-owned networking version of the app, the model-owned
networking version uses the original MVC code base without changing too much
existing code. It also adds a web service component that talks directly to the store. We
call it model-owned networking because the data fetched from the network is owned by
the model layer.

The only added responsibility of the view controllers is to initiate the loading of data
(e.g. on pull-to-refresh or when navigating to a new screen). However, the view
controllers don’t process the data coming back from the network as we did above in the
controller-owned approach. Instead, the data gets inserted into the store. The view
controllers get notified about this change the same way they do with any local change:
by observing the model’s change notification.

The big advantage of this approach is that it’s easy to share data and communicate
changes across the app. All view controllers draw their data from the store and subscribe
to its change notifications. This ensures data consistency, even if multiple parts of the
app display or change the same data independently.

Our model-owned networking code base also comes with some added complexity.
However, this cannot be blamed on the design pattern. Rather, we decided to make the
model-owned version more capable than the controller-owned one: we use the store as
an offline cache to make the app work without a network connection, and we update
data on the client immediately without asking the server first. Due to these
enhancements, we have additional code for tracking uncommitted changes on the client
and for resolving potential conflicts when submitting changes to the server.

When we look at the implementation details below, we focus on the big picture of how
networking is integrated when compared to the controller-owned approach. Along the
way, we only touch on the details of these added features (and complexities) as
necessary, since they’re not essential from the perspective of application architecture.

Fetching Initial Data

Similar to what’s done in the controller-owned networking version, we fetch the initial
data in the folder view controller’s viewDidLoadmethod:

// FolderViewController

override func viewDidLoad() {
// ...

reload()

}

@objc func reload() {
task?.cancel()

refreshControl?.beginRefreshing()

task = folder.loadContents { [weak self] in
self?.refreshControl?.endRefreshing()

}

}

Within the reloadmethod, we update the refresh control’s state and call loadContents on
the current folder. This tells the model layer to refresh the folder’s contents from the

network in order to be up to date with any changes that might have happened on the
server in the meantime. The model-owned networking’s reloadmethod is significantly
simpler than the same method from the controller-owned implementation: we trigger
the reload, but we don’t have to take care of processing the request’s result. This is done
within the model layer, as we’ll see in the following loadContentsmethod:

extension Folder {
@discardableResult

func loadContents(completion: @escaping () -> ()) -> URLSessionTask? {
let task = URLSession.shared.load(contentsResource) { [weak self] result in
completion()

guard case let .success(items) = result else { return }
self?.updateContents(from: items)

}

return task
}

}

In the code above, we perform the actual network request (using the same tiny
networking abstraction as in the controller-owned variant) and process the result. This
request returns an array of Items (i.e. folders or recordings), which we use to update the
folder’s contents. After merging the new contents from the network with the local items
that have pending changes, updateContents finally sets the contents property and saves
the changes:

extension Folder {
func updateContents(from items: [Item]) {

// ...

contents = merged

store?.save(self, userInfo: [Item.changeReasonKey: Item.reloaded])
}

}

Just as in the base MVC version, the store sends a notification after it has saved. The
folder view controller that initiated the reload picks up this notification and updates the
table view through the normal model observation path, which we described in the MVC
chapter.

https://talk.objc.io/episodes/S01E01-tiny-networking-library
https://talk.objc.io/episodes/S01E01-tiny-networking-library

Making Changes

Making changes to the data in the model-owned networking version works the same way
as in the base MVC version. For example, to delete a folder, we take exactly the same
steps: we receive the delete action through the table view’s data source method, remove
the folder from its parent, save the changes, and update the table view in response to the
model’s change notification (see Changing the Model in the MVC chapter).

This demonstrates how transparent the model-owned networking approach is to large
parts of the controller layer. The controllers interact with the data from the store as if it’s
just local data, and the networking happens behind the scenes within the model layer.

For our model-owned networking implementation, we decided to keep the model layer
from the MVC version as untouched as possible and to add a web service separate from
the store. To pick up changes from the local store, this web service observes the same
change notification as the view controllers:

ĩnal classWebservice {
init(store: Store, remoteURL: URL) {
// ...

NotiĩcationCenter.default.addObserver(self,
selector: #selector(storeDidChange(_:)),

name: Store.changedNotiĩcation, object: nil)
}

@objc func storeDidChange(_ note: Notiĩcation) {
guard let pending = PendingItem(note) else { return }
pendingItems.append(pending)

processChanges()

}

// ...

}

From the notification, we extract all the information we need to commit this change to
the web service, including the kind of change (e.g. an update or a delete), as well as the
current attributes of the changed item. This information is stored in the PendingItem
struct. We append this struct to a queue, because other pending changes might still be in
flight or waiting to be committed, or we might not have connectivity in the moment.
Lastly, we kick off the processing of the queue by calling processChanges.

The implementation of processChanges takes the first item from the queue, tries to
commit it to the server, and processes the response. If the response is an error, we have
to decide how to deal with the conflict. In the case of a success, we remove the item from
the queue and send a change notification to give other components a chance to react to
the new committed status of the item:

// WebService

func processChanges() {
guard !processing, let pending = pendingItems.ĩrst else { return }
processing = true
let resource = pending.resource(remoteURL: remoteURL,
localBaseURL: store.localBaseURL)

URLSession.shared.load(resource) { [weak self] result in
guard let s = self else { return }
if case let .error(e) = result {
// error processing ommitted...

} else {
s.pendingItems.removeFirst()

// post notiĩcation ...

}

s.processing = false
s.processChanges()

}

}

This is an abridged version of the networking code, but the full version can be found on
GitHub. In addition to the code shown above, the web service also persists the queue of
pending changes locally (and loads it from disk upon initialization), in order to not lose
local changes while being offline.

We only need to change the controller to improve the user experience of working with
offline and online data. For example, we can add the ability to force reload data, to
inform the user about errors in a graceful manner, or to indicate the offline/online status
of the data onscreen. As an example, we’ve augmented the folder view controller’s data
source methods to indicate whether or not an item has pending local changes:

// FolderViewController

override func tableView(_ tableView: UITableView,
cellForRowAt indexPath: IndexPath) -> UITableViewCell

https://github.com/objcio/app-architecture/blob/master/Recordings-model-owned-networking

{

// ...

let cell = tableView.dequeueReusableCell(withIdentiĩer: identiĩer,
for: indexPath)

cell.backgroundView?.backgroundColor = item.latestChange?.color ?? .white

return cell
}

Discussion
From an architectural perspective, the major difference between the two approaches
presented above — controller-owned and model-owned networking — is the ownership
of the data. In controller-owned networking, the data is owned locally by view
controllers, whereas in model-owned networking, the data is owned by some entity in
the model layer (the Store class in our example).

Networking code in view controllers is often described as an anti-pattern. However, it
doesn’t have to be a problem in principle if the data from the network is only used as
local view state and doesn’t have to be communicated to other components. If the bulk
of the networking code is properly factored out into helper functions, this approach
doesn’t even bloat our view controllers much. The crucial question really is this: does
the data have to be shared?

As soon as data has to be shared, model-owned networking is the natural approach:
since the data is owned by an entity outside of the controller layer, it can easily be
shared across the app without running into data inconsistencies. This is similar to view
state; if a piece of view state is only relevant to one view or one view controller, storing it
locally works well. However, as soon as other components depend on the same state, we
have to move it into a shared entity that can be observed. From there, it’s only a small
step to a shared model that is independent of the application framework.

Networking in Other Architectures

The two networking approaches described in this chapter don’t apply exclusively to
MVC, but also to related patterns like MVVM. The difference is that controller-owned
networking would become view-model-owned networking in MVVM. Even so, the
implementation is very similar.

However, the distinction between controller-owned and model-owned networking
doesn’t apply to patterns like MVC+VS, MAVB, or TEA. For example, the premise of
MVC+VS is to represent view state explicitly as part of the model. Since the data in
controller-owned networking is part of the view state, it would immediately be pushed
into the model layer. Thus, the distinction between controller-owned and model-owned
networking doesn’t make sense in this context.

In MAVB and TEA, there are no view controllers on which a controller-owned
networking approach could be implemented. Therefore, networking code naturally
moves into the model layer, updating the app’s state to which the views are bound
(MAVB), or from which the virtual views are constructed (TEA).

Model-View-
Controller+
ViewState

6

Model-View-Controller+ViewState (MVC+VS) is a variant of the MVC pattern. It
maintains the same layer structure, and it uses the same platform-native mechanisms
like notifications and delegation to connect components. It differs in one important
aspect though: it considers view state to be part of the model layer. All view state is
explicitly represented by a separate store in the model layer. The view controllers
observe this view state store and update the view hierarchy accordingly. Making the
view state part of the model gives us a consistent way of handling view state changes, as
opposed to the ad hoc style of view state communication in MVC.

By modeling the view state as a single struct — rather than relying on the implicit view
state across all view objects — the architecture makes it easier to write functionality that
uses the view state. For example, serializing the entire view state becomes
straightforward. We can also easily inspect the entire view state at a given point (when
debugging, for example).

View State as Part of theModel
Theoretical discussions of application design often reflect the traditional role of
applications as document editors. The model, as defined in typical MVC, represents a
document loaded from a file on disk. The model contains the state in the application
that would be saved to the document’s file on disk if the user performed a save action.
We will refer to this definition as the documentmodel.

The list of view controllers in a navigation stack, scroll positions, tab or row selections,
uncommitted text fields, and other incomplete edit operations are not normally saved to
the document, and are therefore excluded from the document model. We have
previously defined this document-excluded, view-related state as view state.

The separation of these two forms of state — the persisted document model and the
transient view state — has two problems:

1. In modern iOS apps, the view state is expected to be persistent.

2. Non-document actions lose the benefits of model abstraction.

UIKit offers some ad hoc persistence to views (most commonly used via storyboards) to
mitigate the first point, but it’s the second point that can’t be fixed while view state is
excluded from the model.

Let’s consider a complex view action: a navigation change triggered by tapping on a
table row. A whole cascade of steps can be involved in responding to this view action,
such as the following:

1. Tapping a row typically updates the selection and other state on the row to
provide user feedback.

2. The table view controller fetches the model object for the selected row (and might
further apply state updates to the row).

3. The table view controller possibly needs to update its own local state
(e.g. updating timers, animations for the transition, or views for the loss of user
focus).

4. The table view controller might need to determine details of any existing view
controller at the destination, so it might need to read the destination view
controller’s state before updating it to the new value.

A possible data flow diagram might look like this:

View

Controller

Other Views

Other Controllers

User Event

The user event starts and triggers a view action, which gets forwarded to the view
controller. The view controller then handles all further actions.

In MVC, data flow in view state actions has no common structure, and it often has no
clear structure at all. The central controller in the action must understand the data
dependencies of all other objects — including other controllers — so it can propagate the
action correctly. When little view state is involved, this isn’t difficult to manage, but as
the number of components grows, it becomes increasingly difficult. Getting the order of
view state updates right is often a process of trial and error.

If the view action described above were handled in the same way as model actions in
MVC, the diagram would look like this:

View

Controller

Other Views

Other Controllers

User Event

Model

Controller Other Controllers

View Other Views

At first glance, you might think this is far more work: there are nine nodes in the graph,
up from four. However, we’ve really just unfolded a graph that doubled back across itself
into a graph that moves in just one direction — a concept called unidirectional data flow.
The resulting structure keeps “How do I trigger this action?” at the top and “How do I
present this state?” at the bottom.

The separation of concerns is helpful, but the greatest improvements are to data flow.
The data now clearly flows top to bottom, and the central controller no longer needs to
know the data dependencies of the secondary controllers (they observe the model
independently).

Other benefits of a model abstraction include the following:

→ The clean interface of the model permits altering the implementation without
affecting the interface exposed to the rest of the program.

→ The model provides a single source of truth for the action so that refactoring and
testing have a single point they can focus upon.

→ The structure scales better since the code for the bottom half of the diagram
might be reused across different actions.

While MVC+VS proposes making view state part of the model layer, the view state model
is kept separate from the document model because the view state has a slightly different
lifecycle compared to the document model (view state is persisted using UIKit state
restoration and may be purged in the event of a crash). Nevertheless, both follow the
same rules:

View

Controller

Document Model

Changes the
document

Observes the
document

View State Model

Changes the
view state

Observes the
view state

Sends an action Changes the view

In the view state-driven variant of the example app, the view state model and the
document model are represented by the ViewStateStore and DocumentStore classes.
The DocumentStore class fulfills the same role as the Store class in the MVC version of
the app.

The resulting pattern has some structural similarity to TEA, with a separate view state
and model, minus the need for a framework that abstracts away UIKit entirely. In
MVC+VS, observing the view state and updating the views is handled by the view
controllers in the same way that MVC already handles changes to the regular model.

Exploring the Implementation

Value-TypedModel Objects

The MVC+VS version of the Recordings app differs from the base MVC implementation
in one important way: it uses value types for both the document model and the view
state model. The Folder and Recording types are now defined as structs, as are the view
state-related types like SplitViewState and FolderViewState.

We wrote the base MVC implementation using reference types (i.e. using classes)
because we felt it reflected the traditional way of writing Cocoa programs, carrying on
from Objective-C, where reference types dominate. However, using reference types with
ownership shared between the model layer and the controller layer fails to obey the
spirit of unidirectional data flow that MVC+VS aims to embody.

In unidirectional data flow, state should only be read by subscribing to it. To enforce
this, our model exposes a subscription API only, with no way to read values directly.
Using value types to model our data reinforces this concept — if we would have used
reference types, there might have been the temptation to read from shared references to
obtain new values.

Construction

Treating view state like other model state implies that we should construct the view
state first, and that in an observation callback triggered by that construction, we should
construct the views of the app.

However, the construction of the root view controller is an exception to this rule. Since
the view controllers are the observers in this pattern, we can’t observe the view state
model until we have constructed at least one view controller. Because of this, the split
view controller in our Recordings app is constructed unconditionally when the
Main.storyboard file is loaded.

In our implementation, each view controller has a context property. The context
provides a reference to both the document model and view state model. Providing it as a
property avoids the need for singleton data stores or coordinators. The property must be
set on the view controller before its viewDidLoad function is called. Usually, this occurs

as part of construction (for directly instantiated view controllers) or during the
prepare(for:sender:) function (for view controllers created in a segue).

The earliest that this context can be set for the root view controller is during the
application delegate’s application(_:didFinishLaunchingWithOptions)method:

func application(_ application: UIApplication,
didFinishLaunchingWithOptions launchOptions:

[UIApplicationLaunchOptionsKey: Any]?) -> Bool

{

setContextOnSplitViewIfNeeded()

// ...

}

func setContextOnSplitViewIfNeeded() {
let splitVC = window?.rootViewController as! SplitViewController
if splitVC.context == nil {
splitVC.context = StoreContext(documentStore: .shared,

viewStateStore: .shared)

}

}

The split view controller has significant state — due to being the parent of the navigation
stacks on both the master and detail sides — so we’ve opted to separate it from the
application delegate and create a SplitViewController class in this version of the app.
Since the split view controller also loads a master and detail view controller on startup
(which display the root folder view controller and the play view controller, respectively),
we must immediately propagate the context to these child view controllers too:

// SplitViewController

override func loadView() {
super.loadView()
letmasterViewController = masterViewNavigationController.topViewController
as! FolderViewController

masterViewController.context = context.folderContext(index: 0)

let detailViewController = (self.viewControllers.last as! UINavigationController)
.topViewController as! PlayViewController

detailViewController.context = context

}

The context for the detail view controller (the player) is the same as for the split view
controller, i.e. a pair of the document store and the view state store. However, the folder
view controller requires a context that also includes an index value. This allows the
folder view controller to find itself in the stack of folder views represented in the view
state store.

In MVC+VS, all view controllers must know how to locate themselves within the view
state store. This is simple for unique view controllers like the play view controller, as
there is only one playView in the view state, so it can be accessed directly. For
non-unique controllers like folders in the navigation stack, an additional value must be
passed in the context to uniquely identify the controller. For folder view controllers, an
index is sufficient for locating them in the array of folder view controllers.

It’s important to note that information passed in the context like this should only
describe where the view controller will be inserted in the view hierarchy by its parent in
order to locate the view controller’s associated view state. The context should not
include actual data (data should be stored in the view state itself).

Connecting Views to Initial Data

Once the context is set and the views are added to the window and loaded, view
controllers must synchronize the state of the view hierarchy with the state described in
the view state and document stores.

One of the key principles in MVC+VS is that we don’t just fetch data from the view state
or document models. Rather, we must subscribe to that data (so that we’re guaranteed to
receive future changes). In each of the view controllers, including the
SplitViewController, this happens in the viewDidLoadmethod:

// SplitViewController

override func viewDidLoad() {
// ...

observations += context.viewStateStore.addObserver(actionType:

SplitViewState.Action.self) { [unowned self] state, action in
self.state = state
self.synchronizeMasterNavigationController(action)
self.synchronizeDetail(action)
self.synchronizeModalAlerts(action)

}

}

The addObservermethod on the shared view state store is a wrapper around the
standard Cocoa notification center. The actionType parameter allows us to only receive
callbacks for actions we’re interested in (each view state change is associated with an
action describing its origin; in this case, we only want to know about view state changes
originating from split view actions).

The observation callback is invoked immediatelywhen we add the observer (a
suggestion we described in the improvements section of the MVC chapter). The
immediate callback receives the initial state value (an instance of SplitViewState), and a
nil value for the action (indicating a full view state reload, rather than a user action). The
SplitViewState contains a number of nested struct values specifying the view state of
different components of the app:

struct SplitViewState: Codable {
var folderViews: [FolderViewState]
var playView: PlayViewState
var recordView: RecordViewState?
var textAlert: TextAlertState?
// ...

}

Since the split view controller has a number of separate subtrees to manage, its view
state observation handling is split into three synchronize...methods. These start the
creation of the remaining master hierarchy, detail hierarchy, and modal hierarchy,
following the structure described in the split view state. For example, the navigation
stack is constructed in the synchronizeMasterNavigationControllermethod:

// SplitViewController

func synchronizeMasterNavigationController(_ action: SplitViewState.Action?) {
switch action {
// ... non-nil cases omitted

case nil:
masterViewNavigationController.viewControllers =

state.folderViews.indices.map

{ index in
let fvc = storyboard!.instantiateViewController(

withIdentiĩer: .folderIdentiĩer) as! FolderViewController
fvc.context = context.folderContext(index: index)

return fvc
}

}

}

The state.folderViews array is directly converted into the view controllers array used in
the master navigation controller. This code also shows the propagation of the context
from the split view to the folder view.

The split view controller doesn’t need to observe the document store, as it is solely
dependent on view state, but the folder view controller does observe the document store.
As noted before, document state and view state are very similar, and this is true for the
observation logic as well:

// FolderViewController

override func viewDidLoad() {
// ...

observations += context.documentStore.addObserver(actionType:

DocumentStore.Action.self) { [unowned self] (store, action) in
guard
let folderState = self.state,
let folder = store[folderState.folderUUID]?.folder
else { return }

self.folder = folder
self.handleStoreNotiĩcation(action: action)

}

}

The only tricky point here is that the callback closure uses self.state (the folder view
state) to get the UUID of the folder for this view controller. This is the standard pattern
in MVC+VS: the identity of any model object should be stored in the view state rather
than passed to the view controller in the context object. However, this means that the
observation of the document store is dependent on the current view state and must
occur after the view state observation is initiated.

In almost all cases, the model object identifier for a view controller (the folder UUID in
this case) shouldn’t change during the lifetime of the view controller, but in a

hypothetical scenario where you wanted this to happen, you would need to recreate the
document store observation inside the view state store observation callback.

The model observation callback applies the model data to the view in the
handleStoreNotiĩcationmethod:

// FolderViewController

func handleStoreNotiĩcation(action: DocumentStore.Action?) {
guard let folder = self.folder else { return }
switch action {
// ... non-nil cases omitted

case nil:
title = state?.folderUUID == DocumentStore.rootFolderUUID

? .recordings : folder.name

updateCachedSortedUUIDs()

tableView.reloadData()

}

}

The switch statement contains a large number of cases related to handling subsequent
changes, but the nil case is there specifically for a full reset of the view — for example,
when setting the initial data for the view. Since we received the self.state and self.folder
values from our two observer callbacks before this point, we can apply the data from
those cached values.

State Restoration

Since MVC+VS maintains the full view state in the view state model at all times, it is
trivial to save and restore the view state. The ViewStateStore class contains the root of
the view state’s persistent data in its content property, the SplitViewState struct. This
struct — and all the structs it contains — conforms to Swift’s Codable protocol, so it can
be deserialized from or serialized to a JSON archive at any time.

Saving and restoring the view state is triggered from the AppDelegate:

// AppDelegate

func application(_ application: UIApplication,
willEncodeRestorableStateWith coder: NSCoder)

{

guard let data = try? ViewStateStore.shared.serialized() else { return }
if ViewStateStore.shared.enableDebugLogging {
print("Encoding for restoration: \(String(decoding: data, as: UTF8.self))")

}

coder.encode(data, forKey: .viewStateKey)

}

func application(_ application: UIApplication,
didDecodeRestorableStateWith coder: NSCoder)

{

guard let data = coder.decodeObject(forKey: .viewStateKey) as? Data
else { return }

ViewStateStore.shared.reloadAndNotify(jsonData: data)

}

When the content property of the ViewStateStore class changes due to a restore
operation, it posts a notifyingStoreReloadNotiĩcation. Every view controller that has
added itself as an observer of the view state receives an observation callback. Like with
construction, the associated action is nil. The view controller is expected to examine its
own state and bring it up to date with the newly reloaded state — ideally changing only
those properties that need changing. The code for state restoration follows the same
path as the code for initial construction, shown above.

Changing theModel

When changing the document model, MVC+VS is not substantially different to MVC. In
both patterns, view controllers receive view actions (via target-action or as delegates),
change the model with a method call, and then observe the change through
notifications. However, since our implementation of MVC+VS uses a value-type model
and a different observing approach — more strictly enforcing the idea that reading from
the model must be performed by observing the model — there are some differences.

Let’s start at the folder view controller and look at how deleting an item from the folder
works. In our example app, the data source of the table view is set to the folder view
controller by the storyboard. To handle the tap on the delete button, the table view
invokes tableView(_:commit:forRowAt:) on the data source:

// FolderViewController

override func tableView(_ tableView: UITableView,
commit editingStyle: UITableViewCellEditingStyle,

forRowAt indexPath: IndexPath)

{

guard editingStyle == .delete, let uuid = uuidAtIndexPath(indexPath)
else { return }

context.documentStore.removeItem(uuid: uuid)

}

The store handles this call to removeItem by verifying that the item exists and has a valid
parent. It then removes the item from a local copy of the parent folder and calls
updateValue on the Store.content to update the store:

// DocumentStore

func removeItem(uuid: UUID) {
guard
let item = content[uuid],

let parentUUID = item.parentUUID,
var parentFolder = content[parentUUID]?.folder,
let oldIndex = parentFolder.sortedChildUUIDs(in: self).index(of: item.uuid)

else { return }

parentFolder.removeChild(item.uuid, store: self)
content.removeValue(forKey: item.uuid)

content.updateValue(.folder(parentFolder), forKey: parentUUID)

commitAction(Action.removed(parentUUID: parentUUID, childUUID: uuid,

oldIndex: oldIndex))

}

The call to commitAction saves the store and emits a notification for the change. The
FolderViewController observes this change in handleStoreNotiĩcation and deletes the
corresponding row:

// FolderViewController

func handleStoreNotiĩcation(action: DocumentStore.Action?) {
guard let folder = self.folder else { return }
switch action {
case let .removed(parentUUID, _, oldIndex)?where parentUUID == folder.uuid:

updateCachedSortedUUIDs()

tableView.deleteRows(at: [IndexPath(row: oldIndex, section: 0)], with: .right)
// ...

}

}

Changing the View State

In contrast to changing the model, which was very similar to the MVC approach,
changing the view state is significantly different; after all, the handling of the view state
is what differentiates this MVC variant. Where view state updates are typically handled
by the local view or view controller in MVC, they always take a roundtrip to the view
state store in MVC+VS:

Document Model

Changes the
document

Observes the
document

2 3

View

Controller

1 4Sends an action Changes the view

View State Model

Changes the
view state

Observes the
view state

We’ll explore how this view state is used by looking at two different examples: toggling
the play button’s text in the play view controller, and pushing a new folder view
controller on selection of a folder.

Example 1: Updating the Play Button

Step 1: The Button Sends an Action to the View Controller

This step is identical to the MVC version: the play button connects to the play view
controller’s playmethod using an IBAction in the storyboard.

Step 2: The View Controller Changes the View State

When the play button is tapped in MVC, the view controller immediately invokes
togglePlay on the audioPlayer. We don’t track this state outside of the audio player:

// PlayViewController

@IBAction func play() {
audioPlayer?.togglePlay()

updatePlayButton()

}

In MVC+VS, instead of directly calling through to the audio player, the playmethod
must pass this change via the view state store. This requires a few steps, but the first is to
invoke togglePlay on the view state store:

// PlayViewController

@IBAction func play() {
context.viewStateStore.togglePlay()

}

The implementation of this togglePlaymethod in the view state store updates the state
of the playView property — which represents the state of the play view controller — and
then uses the commitActionmethod to send a .togglePlay action notification:

// ViewStateStore

func togglePlay() {
guard var playState = content.playView.playState else { return }
playState.isPlaying = !playState.isPlaying

content.playView.playState = playState

commitAction(PlayViewState.Action.togglePlay)

}

Step 3: The View Controller Observes View State Changes

The play view controller is subscribed to view state changes. This observation is set up
in viewDidLoad, as we’ve seen before:

// PlayViewController

override func viewDidLoad() {
// ...

observations += context.viewStateStore.addObserver(

actionType: PlayViewState.Action.self) { [unowned self] (state, action) in
self.state = state.playView
self.handleViewStateNotiĩcation(action)

}

}

The closure above is called in response to any PlayViewState.Action committed in the
view state. The togglePlaymethod committed a PlayViewState.Action.togglePlay action,
and this will be handled by the corresponding case in the handleViewStateNotiĩcation
method of the play view controller:

// PlayViewController

func handleViewStateNotiĩcation(_ action: PlayViewState.Action?) {
switch action {
case .togglePlay?:
if let playState = state.playState {
updatePlayState(playState)

}

audioPlayer?.togglePlay()

// ...

}

}

Step 4: The View Controller Updates the View

Within the updatePlayStatemethod, we finally update the view hierarchy:

// PlayViewController

func updatePlayState(_ playState: PlayState) {
progressLabel?.text = timeString(playState.progress)

durationLabel?.text = timeString(playState.duration)

progressSlider?.maximumValue = Float(playState.duration)

progressSlider?.value = Float(playState.progress)

playButton?.setTitle(

playState.isPlaying ? .pause : (playState.progress > 0 ? .resume : .play),

for: .normal)
}

Example 2: Pushing a Folder View Controller

Step 1: The Table View Calls Its Delegate

In MVC+VS, tapping the table view cell does not directly trigger a storyboard-connected
segue like it does in MVC. Instead, we use the table view’s delegate method to receive the
selection event.

Step 2: The View Controller Changes the View State

Within this delegate method, we change the view state by pushing the selected folder:

// FolderViewController

override func tableView(_ tableView: UITableView,
didSelectRowAt indexPath: IndexPath)

{

guard let item = itemAtIndexPath(indexPath) else { return }
switch item {

case .folder(let f): context.viewStateStore.pushFolder(f.uuid)
// ...

}

}

The pushFolder implementation on the view state store is straightforward:

// ViewStateStore

func pushFolder(_ uuid: UUID) {
content.folderViews.append(FolderViewState(uuid: uuid))

commitAction(SplitViewState.Action.pushFolderView)

}

The view state representation of pushing a folder view controller is appending the
folder’s UUID to the split view state’s folderViews array. Since the split view controller
acts as the parent for the navigation controller containing the list of folders, this
pushFolder call triggers a SplitViewState.Action notification.

Step 3: The View Controller Observes View State Changes

During initial construction of the split view controller, we added an observer — which
calls the synchronizeMasterNavigationControllermethod — to observe these actions:

// SplitViewController

override func viewDidLoad() {
// ...

observations += context.viewStateStore.addObserver(

actionType: SplitViewState.Action.self) { [unowned self] state, action in
self.state = state
self.synchronizeMasterNavigationController(action)
self.synchronizeDetail(action)
self.synchronizeModalAlerts(action)

}

}

Step 4: The View Controller Updates the View

Within the synchronizeMasterNavigationControllermethod, we switch on the view state’s
action and react to the pushFolderView action by configuring and pushing a new folder
view controller onto the navigation stack:

// SplitViewController

func synchronizeMasterNavigationController(_ action: SplitViewState.Action?) {
switch action {
case .pushFolderView?:
let fvc = storyboard!.instantiateViewController(
withIdentiĩer: .folderIdentiĩer) as! FolderViewController

fvc.context = context.folderContext(index: state.folderViews.endIndex - 1)

masterViewNavigationController.pushViewController(fvc, animated: true)
// ...

}

}

The new folder view controller figures out the folder it should display on its own: it
inspects its position in the navigation stack and consults the view state to determine the
UUID of the folder to be presented (the call to context.viewStateStore.pushFolder
ensured this UUID is available).

Testing

View State-Driven Integration Testing

The core approach for testing an MVC+VS application is integration testing. In name,
this is the same approach we used for the base MVC project, but the implementation is
quite different.

In the base MVC project, we constructed a new window and built an entire view
controller tree and view tree on top of this window, testing these new trees against our
expectation as a single integrated unit. With MVC+VS, we only build the root view
controller and provide it with the document model and view state model as its context.
The view controller and view trees then build themselves in response to the view state.
No matter how large or complex a view hierarchy is, building always takes the same
form:

// FolderViewControllerTests

override func setUp() {
super.setUp()
documentStore = constructTestingStore()

viewStateStore = ViewStateStore()

let storyboard = UIStoryboard(name: "Main", bundle: Bundle.main)
splitViewController = storyboard.instantiateInitialViewController()

as! SplitViewController
splitViewController.context = StoreContext(documentStore: documentStore,

viewStateStore: viewStateStore)

splitViewController.loadViewIfNeeded()

}

We construct the two stores, instantiate the root view controller from the storyboard, set
the context, and load the view.

We used a default-constructed ViewStateStore above — so we’ll get a default
configuration of the app — but we can construct any view state we need and use that to
build any possible configuration of the app. For example, here’s a view state value that
loads two folders — the root folder and a child folder — onto the navigation stack,
selects an item in the play view controller, and presents a text alert to create a new folder
in the child folder:

let content = SplitViewState(
folderViews: [

FolderViewState(uuid: DocumentStore.rootFolderUUID),

FolderViewState(uuid: uuid1)

],

playView: PlayViewState(uuid: uuid2, playState:

PlayState(isPlaying: false, progress: 0, duration: 10)),
textAlert: TextAlertState(text: "Text", parentUUID: uuid2, recordingUUID: nil)

)

viewStateStore.reloadAndNotify(jsonData: try! JSONEncoder().encode(content))

This describes the entire view state, and reloadAndNotify tells the view controller
hierarchy to rebuild itself from scratch to conform to the new state. This is the strength
of view state-driven programming: we can construct a new instance of the app in a
specific state simply by providing the document and view state as inputs to the root view
controller.

If all we want to do is verify that the view controller and view hierarchies are constructed
correctly for a given combination of view state and document state, then the testing
code is very similar to MVC’s integration testing:

// FolderViewControllerTests

func testRootTableViewLayout() {
guard let navController = splitViewController.viewControllers.ĩrst
as? UINavigationController else { XCTFail(); return }

guard let rootFolderViewController = navController.topViewController
as? FolderViewController else { XCTFail(); return }

// ...

let ĩrstCell = rootFolderViewController.tableView(

rootFolderViewController.tableView,

cellForRowAt: IndexPath(row: 0, section: 0))

XCTAssertEqual(ĩrstCell.textLabel!.text, " Child 1")

// ...

}

The first three lines are a traversal from the split view controller down to the root folder
view controller. This is new: MVC already had references to the view controllers because
it built them manually. For MVC+VS, we need to traverse through the automatically
constructed hierarchy. However, the remaining test code — reading from the hierarchy
to confirm the expected structure — is identical.

Things start to get very different from MVC testing when we look at the response to
changes. In MVC, we needed to wait for animations and other asynchronous changes to
complete before we could examine the view controller or view trees. This made tests
difficult to write and difficult to keep reliable — especially tests on view actions that
primarily affected view state.

In MVC+VS, we can separate the testing of expected view state changes in response to
specific view actions from the testing of updates in the view hierarchy. More specifically,
instead of waiting for view actions to perform animations and eventually affect the view
tree, we can test the view state to ensure that the view actions have made the appropriate
data changes (this is the view action to view state path). If we want to test that the view
tree will be constructed to correctly reflect those view state data changes, we can write a
separate test for that (the view state to view path).

We’ve already shown how to test the view state to view path. The previous
testRootTableViewLayout test looked at the construction of the root view controller
based on a certain view state. Substitute a different view state, as shown in the earlier
example, and you can test any view in the program. Additionally, you can test
transitions between view states by setting up the views with an initial view state,
changing the view state, and testing the resulting view hierarchy against your
expectations.

All that remains is to test the view action to view state path. Here’s an example that tests
selecting and navigating to a new folder:

// FolderViewControllerTests

func testSelectedFolder() throws {

guard let navController = splitViewController.viewControllers.ĩrst
as? UINavigationController else { XCTFail(); return }

guard let rootFolderViewController = navController.topViewController
as? FolderViewController else { XCTFail(); return }

// Check initial conditions

XCTAssertEqual(viewStateStore.content.folderViews.count, 1)

// Perform change

rootFolderViewController.tableView(rootFolderViewController.tableView,

didSelectRowAt: IndexPath(row: 0, section: 0))

// Check ĩnal state

guard viewStateStore.content.folderViews.count == 2 else { XCTFail(); return }
XCTAssertEqual(viewStateStore.content.folderViews[1].folderUUID, uuid1)

}

Again, the test starts with three guard statements to obtain a reference to the root folder
view controller. Then we check our before state, perform the change by triggering an
action on the view controller, and check the result on the view state store. For the same
test case in MVC, we needed to set ourselves as the navigation controller’s delegate, call
performSegue, wait on an XCTestExpectation for acknowledgement by the navigation
controller delegate method that the transition was complete, and then read the change
from the view controller hierarchy.

In MVC+VS, by reading values from the view state, we avoid the need for delegates,
asynchronous waits, and difficult-to-write-and-maintain code. We are not limited by
animations. Even when we do need to read from the view controller or view hierarchies
— as in view state to view path tests — we are reading from both view controller and view
hierarchies that are not actually added to a window. This has the advantage that the
tests are not subject to screen-related quirks like device orientation or screen size
classes.

Interface Testing the View State Store?

The view state store represents a second model object. It might appear as though this
would be a useful interface for testing, like interface testing on view-models in MVVM.
However, view state is not really a testable interface, as it does not tend to have any
significant logic or behaviors. Actions on the view state store tend to have setter

semantics or other simple semantics like push and pop. The problem with testing
actions with such simple semantics is that your tests look like this:

func testMyAction() {
XCTAssert(myStore.myValue == someInitialValue)

myStore.myValue = newValue

XCTAssert(myStore.myValue == newValue)

}

This test is useless: unless you have a highly complex custom getter or setter onmyValue,
there is no logic tested in your program here.

This is the fundamental difference between a view state store and a view-model: the
view-model is a pipeline of transformations around model objects, but the view state
store is merely an observable store of plain values. In MVC+VS, the application logic —
presentation and interaction — remain in the view controller. Automated testing must
therefore be performed on the view controller. For automated testing, MVC+VS should
keep the same integration tests that were used in MVC.

State Logging

While the view state rarely includes significant logic, it is well-suited to a different
purpose: serialization. By default, the MVC+VS app logs view state to the console:

Restored ViewState to:

{

"folderViews" : [

{

"folderUUID" : "00000000-0000-0000-0000-000000000000",

"editing" : false,
"scrollOffset" : 0

},

{

"folderUUID" : "6950BA0E-74F5-4034-9B9F-3D3FEB48B939",

"editing" : false,
"scrollOffset" : 0

}

],

"playView" : {

}

}

This log message indicates that when the app opened, it restored two folders on the
stack (the root folder always has a UUID that is all zeros), and nothing was selected in
the play view.

This type of information is useful to build test cases, and also during development for
quickly understanding if an unexpected behavior is due to incorrectly set state or
incorrect responses to that state. Explicit logging is also helpful to surface issues in
difficult-to-observe data.

The key advantage to logging is that it can be active before you realize you need it. If you
don’t understand why previously functional behavior is non-functional, you can glance
at the log while you’re running the app and gain an understanding of the problem while
the debugger is still active.

Time Travel Debugging

Time travel in a user interface is the idea that every time a data-driven interface changes,
you can save a snapshot of all data and replay this data later to restore the user interface
to a prior state. It’s very similar to undo and redo, but where undo and redo affect only
traditional model data, time travel also affects view state-related properties like
navigation, selection, scroll position, dialogs, and more.

In most cases, time travel is a cute trick, but — unlike undo and redo — it is not a useful
feature to deliver to a user. However, time travel can be useful during development for
quickly verifying that an application can cleanly respond to state restoration and that all
view state is correctly captured in the view state store.

In the application(_:didFinishLaunchingWithOptions: function in the app delegate, you’ll
see the following code:

func application(_ application: UIApplication, didFinishLaunchingWithOptions
launchOptions: [UIApplicationLaunchOptionsKey: Any]?) -> Bool

{

// ...

#if false
DispatchQueue.main.async {

// Wait until *after* the main window is presented and

// then create a new window over the top.

self.historyViewController =
HistoryViewController(nibName: nil, bundle: nil)

}

#endif

return true
}

Change #if false to#if true and time travel will be enabled. A slider will appear at the
bottom of the application while it is running. Drag the slider back and forth to jump
through all the previous states of the application.

Note that playback state and record state are deliberately omitted from the time travel
history since it causes problems to have them continually emit new states when you
might be trying to drag the slider.

Discussion
Handling view state changes as discussed in this chapter requires significantly more
code than handling simple view state changes in MVC. What was previously a directly
applied change is now forced to be routed via the view state model interface. The upside
is that we’ve created a consistent mechanism for communicating view state changes in
our app. By enforcing the observer pattern on the global view state, mistakes that result
in an out-of-sync UI are much more difficult to make.

Communication between view controllers can now occur via the view state. For example,
if we want to have an additional mini player at the bottom of the folder view, we can use
the same play state without having to set up a communication channel between the
existing player view controller and the newly added mini player. The view state is used
as the single source of truth, and both players can subscribe to it.

Some other benefits are subtler:

→ User interface state restoration requires no additional code, whereas MVC
requires encoding and decoding implementations on each view controller.

→ You can log the view state (by converting it to JSON and printing it out every time
it emits a notification) to observe the abstract state of the application and debug
problems.

→ You can restore the state of the application, independent of UIStateRestoring, to
repeatedly debug specific sections of your application (as discussed in the time
travel debugging section above).

→ The view state model offers a place to add abstractions around navigation and
flow operations for the purpose of adding features or managing complexity.

A Caveat to Tracking View State

UIKit was not designed to accurately report view state changes. You cannot always
intercept view state changes before the view hierarchy is updated by UIKit, and you
must update your state to match changes UIKit has already made. This is further
complicated by situations where UIKit fails to clearly reportwhat action occurred.

Perhaps the most difficult example of this is the handling of the back button in a
navigation controller’s navigation bar, particularly when the navigation controller is on
the master side of a split view controller (like the folder navigation controller of the
Recordings app). For most buttons, you can intercept the action, route the action via the
view state model, and change the view hierarchy only in response to the notification this
creates. Unfortunately, UIKit does not allow customization of navigation bar back
button actions, and by the time any interceptable action is triggered, the navigation
controller’s stack is already changed and only limited information about what occurred
is offered.

The following method — implemented in the split view controller of the Recordings app
— updates the view state when the back button is tapped or a collapsed detail view is
dismissed. It does this by listening to the navigation controller’s delegate methods.
However, these methods will also fire after we change the view hierarchy in response to
a view state change (for example, when we push a new view controller, or during state
restoration). We need to take care to only update the view state when the action did not
originate from the view state:

func navigationController(_ navigationController: UINavigationController,

didShow viewController: UIViewController, animated: Bool) {

guard animated else { return }

let detailOnTop = navigationController.viewControllers.last
is UINavigationController

if self.isCollapsed && !detailOnTop {
// The detail view is dismissed, clear associated state

context.viewStateStore.setPlaySelection(nil, alreadyApplied: true)
}

let newDepth = navigationController.viewControllers.count
- (detailOnTop ? 1 : 0)

if newDepth < state.folderViews.count {
// Handle the navigation bar back button

context.viewStateStore.popToNewDepth(newDepth, alreadyApplied: true)
}

}

It’s a frustrating scenario to handle, but as stated, this is one of the worst cases you’re
likely to encounter when handling view state in UIKit. TEA and other patterns with a
declarative view layer suffer from the same problem: UIKit’s view state changes
independent of your view state or model.

Lessons to Be Learned

Data-Dependency Injection

Each of the application implementations in this book uses a different approach to
connect each view controller to its data. The base MVC implementation sets a model
object on each view controller but otherwise requires view controllers to understand the
view controller hierarchy to directly talk to peers and singletons. The MVVM
implementation uses a coordinator to provide context. MAVB connects all views
together in a data dependency graph using reactive programming bindings. TEA runs
everything through a driver that automatically provides data to functions when needed.

The implementation in this chapter uses a context property on each view controller and
requires passing the context to view controllers on construction. While this isn’t

dramatically different from setting a model object — like in the base MVC
implementation — it demonstrates a way to avoid singletons.

Our original implementation of the MVC+VS project did not use a context property.
Instead, view controllers directly accessed a singleton version of the document store and
the view state store. This worked well for the base app, but we were unable to write tests
because the views could not be decoupled from their environment.

Ensuring a context object is correctly set before viewDidLoad requires more work than
singletons, but it’s a flexible, simple approach that can be added to any controller-based
pattern, including MVC and MVVM.

Communicating Global View State

The MVC+VS pattern shown in this chapter takes the premise of view state as part of the
model to the fullest extent possible in UIKit: the entire view state of the app is
represented in the ViewStateStore. The combination of document and view state stores
is the authoritative representation of the entire app, and when you want to change the
view, you change the relevant store and let the views update reactively.

This same idea can be applied on a smaller scale to help with two common problems in
MVC code bases:

1. To communicate view state between view controllers.

2. To simplify view state logic locally within a single view controller.

In this section, we’ll look at an example that addresses the first point. In the next section,
we’ll look at an example addressing the second.

Most of the view state in the average iOS app can be managed locally — by the views
themselves, or by the presenting view controller — since no other part of the app
depends on this state information. However, most apps also have some view state that
must be communicated between view controllers, and that’s where we can borrow the
idea of a view state store from MVC+VS.

As an example, we’ll look at integrating a mini player at the bottom of the screen, similar
to the approach used in apps like Apple Music or Spotify (this is covered in the
accompanying videos as well). This scenario immediately raises a problem: before

adding a mini player, the playback state can be handled locally within the play view
controller, since no other part of the app depends on it. With the addition of a mini
player, we’ll need to communicate the playback state between the detail play view
controller and the mini play view controller.

Similar to how MVC+VS lifts all view state into a view state store, we’ll lift just the audio
player and associated play state into a global shared player that can be observed via
notifications. The player and associated playback state will behave as its own model. If
we later have to deal with other global view state besides the playback state, we could
choose to transform the shared player class into a more generic global view state store.

To begin, we pull the code related to the player and playback state out from the play view
controller and into a shared player class:

ĩnal class SharedPlayer {
var duration: TimeInterval { return audioPlayer?.duration ?? 0 }
var progress: TimeInterval { return audioPlayer?.currentTime ?? 0 }
var audioPlayer: Player?

var recording: Recording? {
didSet { updateForChangedRecording() }

}

// ...

}

Whenever the playback state or the current recording changes, we post a notification
that will be observed by both the detail and the mini play view controller:

ĩnal class SharedPlayer {
// ...

static let notiĩcationName =
Notiĩcation.Name(rawValue: "io.objc.SharedPlayerStateChanged")

func notify() {
NotiĩcationCenter.default.post(name: SharedPlayer.notiĩcationName,
object: self)

}

func updateForChangedRecording() {
if let r = recording, let url = r.ĩleURL {
audioPlayer = Player(url: url) { [weak self] time in
self?.notify()

}

notify()

} else {
audioPlayer = nil
notify()

}

}

}

The updateForChangedRecordingmethod has to call notify in three different branches:
in the player callback to track the playback progress, after the audio player has been
initialized, and in the case that we don’t have a recording. This logic could be simplified
further by improving the API of the underlying Player class, but for now, it will suffice.

The play view controller directly fetches the current state from the shared player and
then subscribes to notifications for subsequent updates. This is the same observer
pattern as in the MVC document store:

class PlayViewController: UIViewController, UITextFieldDelegate {
// ...

override func viewDidLoad() {
// ...

updateDisplay()

NotiĩcationCenter.default.addObserver(self,
selector: #selector(playerChanged(notiĩcation:)),

name: SharedPlayer.notiĩcationName, object: nil)
}

@objc func playerChanged(notiĩcation: Notiĩcation) {
updateDisplay()

}

func updateDisplay() {
updateControls() // updates time labels and playback controls

if let r = sharedPlayer.recording {
// ... show controls and set navigation title

} else {
// ... hide controls and show no recording label

}

}

// ...

}

This could be improved by using an observing approach that sends the initial value
immediately upon observing (as we used for the MVC+VS store), but we’ll skip that step
for the sake of brevity.

This observation of a new model — containing state that was previously treated as view
state — will keep our views in sync with the player state, regardless of how many players
are visible onscreen. Whenever we have view state that is shared by multiple
components (e.g. selection, network activity, or user session status), we can use the same
pattern.

We used a singleton for the shared player above, since it’s cumbersome to pass
on the shared view state instance to all dependent view controllers from their
common ancestor. However, if you use the coordinator pattern (which is

described in the MVVM-C chapter), it becomes trivial to set the shared view
state on a view controller’s property or to pass it into the view controller’s
initializer.

Simplifying Local View State

In the previous example, we borrowed ideas from MVC+VS to create a consistent pattern
for communicating view state across multiple view controllers. However, we can also
apply a simplified version of MVC+VS to a single view controller in MVC by combining
state properties into a single struct or enum property, observing that property, and
updating the views whenever the property changes.

In the play view controller, there are a number of related properties that are always set at
the same time. Whenever the recording changes, we need to set the navigation item’s
title, the text field’s text, the progress, and the duration. Because these properties belong
together, we can group them in a struct:

struct DisplayState {
var name: String
var playState: Player.PlayState
var progress: TimeInterval
var duration: TimeInterval

}

We can now add a property that holds the display state to our view controller. Whenever
anything changes, we call updateViews. Note that the property is optional — either we
have no selected recording, or we have a recording and all its properties available:

var displayState: DisplayState? = nil {
didSet {
updateViews()

}

}

The didSet property observer is a lightweight way to have a single observer to a variable
that might be changed from multiple locations — in this case, the display state.

When we have two completely different types of state within a single view
controller, we can also consider splitting up the view controller into two
different view controllers: in one view controller, we might display “no
recording,” whereas the other view controller can only be configured with a
recording and a player (it has no optional properties).

The updateViewsmethod looks at the display state and changes the view hierarchy
accordingly:

private func updateViews() {
activeItemElements?.isHidden = displayState == nil
noRecordingLabel?.isHidden = displayState != nil
title = displayState?.name ?? ""

nameTextField?.text = displayState?.name ?? ""

updateProgressDisplays()

}

In the original MVC app, we set the view controller’s title from four different places:
once in the storyboard, twice in updateForChangedRecording, and once in
textFieldDidEndEditing. Now, instead of changing the title, we can change the
displayState property. At first, this might feel like just another level of indirection, but it
simplifies reasoning about the logic of the class: to understand whether all views are
configured correctly, we only have to read the updateViewsmethod. When we want to
change how the title is displayed, we can do that in a single place instead of in four
places. The display state works in a way similar to a model value: all changes go through
this property and are observed using a didSet property observer.

A drawback of this approach is that we are performing extra work. Now when we change
just the name of a recording, we have to create a new value of DisplayState. Setting the
displayState property will also update unrelated properties, such as the progress
displays. We could try to look at which properties changed, or, as in MVC+VS, we could
include the action that happened. Each of these options is a tradeoff between overhead
and correctness, and depending on your use case, you might lean toward one or the
other.

ModelAdapter-
ViewBinder

7

This chapter is about the experimental architecture ModelAdapter-ViewBinder (MAVB).
It’s an architecture that tries to solve some of the pitfalls of MVC while still
acknowledging that applications ultimately deal with mutable view hierarchies and
mutable models. MAVB isolates mutation and uses clearly defined observation paths
between models and views. It also provides a unified way of communicating between
different parts of a program: everything is connected through one-way reactive
bindings.

The MAVB pattern started as an effort to avoid view controller subclasses in MVC. What
if, instead of subclassing a view controller and overriding methods, we passed closures
to the view controller’s constructor that both described the methods to override and
delegate methods to implement? Then why not configure all the state of the view
controller through construction parameters? And if we’re configuring the current state,
then why not use reactive programming to channel future state into the view controller
as well?

It turns out that it’s possible to pass all properties, behaviors, and observations into the
controller on construction. This allows us to avoid the subclass entirely. In effect, we
give the controller a long list of rules about how it should behave if specific events occur
in the future — in other words, we provide it with a declarative system.

When we do this, two interesting facts emerge:

1. If we inject all behaviors into the object on construction, then the object can
self-manage and doesn’t need to be accessed again. In fact, it’s a bad idea to
access the object again, since we’re only going to conflict with the self-managing
behaviors.

2. View controllers exist to serve views, not themselves. If we’re going to inject
behavior, we should bypass the controller entirely and inject behaviors into our
views.

Thus the CwlViews project began. This is a framework for constructing views with all
properties and behaviors fully specified on construction so that there’s never a need to
access the view after construction. CwlViews eliminates the controller’s architectural
role in MVC. The MAVB pattern discussed in this chapter is a description of writing
applications under the conditions created by the CwlViews framework.

In MAVB, the view layer is constructed through view binders. View binders are the view
construction interfaces provided by CwlViews that allow views to be constructed with all

of their properties and behaviors injected into them on construction. A view binder is a
list of all of the closures, reactive programming bindings, and other properties that
describe the view’s behaviors. The view binder follows this list — collectively called the
bindings— to automatically construct the underlying UIKit view object as needed,
configuring all its properties and automatically managing all its behaviors across its
lifetime.

Amodel adapter is a wrapper around a state object that forces all access to the state
object to occur through reactive programming. Any changes to the underlying object
must be applied via the model adapter’s signal inputs (properties to which you can bind
reactive programming observables). Correspondingly, any values or changes read from
the underlying object must be read via the model adapter’s output signals (reactive
programming observables).

View

View Binder

Model Adapter

Model

Sends an action Changes the view

Action binding transforms
the view action into a

model action

Value binding transforms
the model data into
presentation values

Changes the model Observes the model

Where most other patterns include all of their logic within one of the layers, smaller
applications in MAVB may define a significant percentage of their application logic in
the reactive programming transformations of the bindings between the view binder and
model adapter layers. Looking at the diagram above, this means that much of the logic
lives in the arrows, rather than in the boxes.

Exploring the Implementation

A Quick Introduction to CwlViews and View Binders

Before we look at the other aspects of the design pattern, let’s take a quick look at the
syntax for constructing view binders, since they are an essential part of the pattern and
the syntax used is a little unusual.

If we wanted a UILabelwith a constant text value, we would construct a Label view
binder with an immutable value for the .text binding:

Label(.text -- "My text label")

We don’t usually invoke uiView() to ask the view binder to construct its view (instead, we
add the view binder to a super view and this method is invoked automatically), but if we
did, then the view binder would construct a UILabel and set the text property to “My text
label.”

The .text identifier is the binding name, the -- is the static binding operator (which
indicates that the text will never change for the lifetime of the view), and “My text label”
is the binding argument. We can think of this initialization as equivalent to the following
in standard Swift parameter syntax:

Label(text: "My text label")

However, by using the binding name .text and a custom operator, we have the flexibility
to switch to a different operator, which takes a mutable value instead of a constant value:

Label(.text <-- signalEmittingStrings)

The <-- operator is CwlViews’ value binding operator. It indicates that the binding
argument describes a mutable value in the form of a signal, and that data flows from the
binding argument into the underlying property identified by the binding name.

In the MVVM chapter, we used RxSwift to implement reactive programming bindings,
but the CwlViews framework relies instead on CwlSignal to provide reactive
programming bindings. In most cases, the difference shouldn’t matter, but keep in mind
that in CwlSignal, the word “signal” is used as a synonym for what RxSwift calls an

“observable,” and the concept of “signal input” is similar to that of a “subject” in RxSwift
(a type at the head of a reactive pipeline to which you can send values).

Signal inputs are used as the binding argument with the third and final binding operator,
the --> operator:

TextField(.textDidChange --> inputThatAcceptsStrings)

When the text field’s text changes, the change notification will be sent to the signal input
provided as the binding argument.

Label(.text <-- playState.mediaState.map { timeString($0.progress) })

The above line from the Recordings app creates the label showing playback progress for
the player. playState.mediaState is a model adapter that contains the latest state
emitted from the player. Invokingmap (a reactive programming transformation
function) directly on the model adapter transforms the model adapter’s default output
signal. The closure takes the progress time interval from each media state struct emitted
by the signal and converts it into a readable string. The resulting string-emitting signal
is used to provide the text value for the label.

Connecting action bindings from the view binder to model adapters works similarly:

BarButtonItem(

.barButtonSystemItem -- .add,

.action --> Input().map { _ in .record(inParent: folder.uuid) }.bind(to: store)
),

This line from the Recordings app shows the action for the “+” button in the navigation
bar that starts a new recording. The Input() initializer creates a new input channel (a pair
consisting of the signal input and signal objects). Themap function appends a
transformation to the signal end of the channel. The closure ignores the void argument
emitted when the button is tapped and returns a .record(inParent:)model action
message. The signal end of the channel is bound to the store’s default signal input.
Binding a channel consumes the signal end, so the return value is the input end of the
channel. As the final step, the input end is combined with the .action binding name
using the --> operator.

Scenes are constructed in MAVB by pairing a view state definition together with the
construction of the scene’s view controller and child views. The following is a very small
example that shows all the common features:

struct TextState: StateContainer {
let value: Var<String>
init () {
value = Var("")

}

var childValues: [StateContainer] { return [value] }
}

func textFieldController(_ text: TextState) -> ViewControllerConvertible {
return ViewController(
.view -- View(

.layout -- .vertical(

.view(TextField(

.text <-- text.value,

.didChange --> Input()

.map { content in content.text }

.bind(to: text.value)

)),

.space(.ĩllRemaining)

)

)

)

}

There are two top-level definitions in this code sample: the view state object TextState
(at the top), and the view binder construction function textFieldController (at the
bottom).

The TextState contains a Var<String>. The Var type is a generic model adapter provided
by the CwlViews library which offers basic setter/notifier behavior and participates in
view state persistence. TextState also conforms to StateContainer so it can be part of the
view state tree. We override the default implementation of childValues to return [value],
which ensures that value is included during view state persistence or view state
debugging.

This scene constructs a view controller with a content view, and the content view
contains a single text field. The .vertical, .view, and .space identifiers used in the code
sample are not binding names, but rather part of the layout description for the content
view (a vertical layout with a text field view at the top and empty space filling the
remainder of the view). The text field has two mutable bindings: a .didChange binding
that ensures it will update the text.valuemodel adapter when the text field content
changes, and a text binding that ensures that when the text.value is updated from
anywhere in the program, the text field will update accordingly.

Construction

MAVB has a very different startup approach compared to typical MVC for two reasons:

1. It doesn’t have a controller layer (no UIApplicationDelegate or UIViewController
subclasses).

2. It doesn’t use storyboards or nib files.

Since typical Cocoa startup is usually determined by these components, taking them
away leads to a very different process.

In MAVB, model adapters wrapping the top-level program state are constructed first.
The store is encapsulated by a single model adapter. View state is a tree of model
adapters that encapsulate a portion of the entire view hierarchy, starting with the state
of the split view controller at the top level of the view hierarchy:

private let store = StoreAdapter(store: Store())
private let splitVar = Var<SplitState>(SplitState())

The store adapter (a custom model adapter) immediately wraps the underlying store
model object. Similarly, the Var (a library-provided model adapter for view state that
implements setting and persistence) wraps the split state, which represents the abstract
state of the view hierarchy.

These objects are used as the parameters to a function that constructs the application
view binder (in MAVB, the application object, like other Cocoa controller objects, is
treated as a view):

func application(_ splitVar: Var<SplitState>, _ store: StoreAdapter)

-> Application

{

return Application(
.window -- Window(

.rootViewController <-- splitVar.map {

splitState -> ViewControllerConvertible in
splitView(splitState, store)

}

),

.didEnterBackground --> Input().map { .save }.bind(to: store),

.willEncodeRestorableState -- { archiver in
archiver.encodeLatest(from: splitVar)

},

.didDecodeRestorableState -- { unarchiver in
unarchiver.decodeSend(to: splitVar)

}

)

}

The Application view binder is configured with four bindings: .window,
.didEnterBackground, .willEncodeRestorableState, and .didEncodeRestorableState.

Even though the window binding is a static binding, this immutability refers to the
reference set on the application object and not to the contents of the window. When the
application invokes the .didDecodeRestorableState closure during state restoration, the
splitVarmodel adapter receives a change. In the .rootViewController binding, we observe
that change using splitVar.map and replace the entire root view controller.

Changing theModel

Applying changes to the underlying model often follows a pattern called a reducer— a
function with the signature (inout State, Action) -> Notiĩcation that updates a state
object in its own isolated context. For simpler model adapters, the returned notification
(which is often just a copy of the updated model state) is directly emitted through the
default output signal. More complex model adapters might need to further process the
notification before emitting.

In this example, we’ll look at the steps involved in removing an item from a folder:

View

View Binder

Model Adapter

Model

1

2

3 4

5

6Sends an action Changes the view

Action binding transforms
the view action into a

model action

Value binding transforms
the model data into
presentation values

Changes the model Observes the model

Step 1: View Actions Are Delivered to the Binder

The table view in which the user deletes the cell is constructed as follows:

.view -- TableView<Item>(

// ...

.commit --> Input()

.compactMap { styleAndRow in styleAndRow.row.data?.uuid }

.map { uuid in .removeItem(uuid: uuid) }

.bind(to: store),

// ...

)

Specifying the commit binding causes the internally created data source for the table
view to implement the tableView(_:commit:forRowAt:)method, and any time the table
view calls that method, the row description will be emitted through the binding.

Step 2: Action Bindings Transform View Actions into Model Actions

In the code above, compactMap transforms the styleAndRow parameters emitted when
the tableView(_:commit:forRowAt:)method is invoked into the UUID for the row. Since
this UUID is wrapped in an optional, the compactMap transformation unwraps the
optional, sending only non-nil results to the next transformation stage.

The next stage is amap that transforms the non-nil UUID into a .removeItemmodel
action message, which is then sent to the store.

Step 3: Model Adapter Applies Model Action to theModel

The StoreAdapter is primarily a wrapper around an internal FilteredAdapter.
FilteredAdapter is a helper type in CwlViews that provides most of the functionality for a
document model adapter. It wraps an underlying state object; provides a reducer-like
closure for applying messages to that state object; and can be observed multiple times,
each with an independent filter (like a slice of the underlying object or emitted
notification stream), hence the name:

struct StoreAdapter: SignalInterface, SignalInputInterface {
// ...

init(store s: Store) {
ĩlteredAdapter = FilteredAdapter(initialState: s) {

(store: inout Store, message: Message) -> Store.Notiĩcation in
switchmessage {
// ...

case .removeItem(let u): return store.removeItem(uuid: u)
// ...

}

}

}

This shows both the initialization of the filtered adapter with the internal state object
(the underlying store) and the reducer function that applies messages to the state object
— in this case, we’ve shown the .removeItemmessage being handled by calling
removeItem(uuid:).

Step 4: Actions on theModel Are Transformed into Signals

The call to store.removeItem(uuid: u) above immediately returns a store notification
from the reducer closure. These returned notifications are emitted through a
notification signal from the filtered adapter, but it’s uncommon to expose that signal
directly — the purpose of the filtered adapter is to produce something more customized
to the needs of an observer.

The folderContentsSignalmethod is an example of this type of customized view into a
model. The method is implemented on the store adapter and, given a folder UUID, it
emits a stream of array mutations describing the contents of that folder over time, sorted
for display.

The implementation relies on ĩlteredSignal, the primary filtering output of the filtered
adapter. This function takes a transformation function with access to the underlying
store, the most recent notification emitted from the primary reducer function, and a
state variable to enable differential communication of updates, where possible:

func folderContentsSignal(_ folderUuid: UUID) -> Signal<ArrayMutation<Item>> {
return ĩlteredAdapter.ĩlteredSignal(initialValue: []) { (
items: inout [Item],
store: Store,

notiĩcation: Store.Notiĩcation?,

next: SignalNext<SetMutation<Item>>) throws in

switch notiĩcation ?? .reload {
case .mutation(letm)wherem.values.ĩrst?.parentUuid == folderUuid:
next.send(value: m)

case .reload:
if let folder = store.content[folderUuid]?.folder {
next.send(value: .reload(folder.childUuids.compactMap {

store.content[$0]

}))

} else {
throw SignalComplete.closed

}

default: break
}

}.sortedArrayMutation(equate: { $0.uuid == $1.uuid }, compare: { l, r in

l.name == r.name ? l.uuid.uuidString < r.uuid.uuidString : l.name < r.name

})

}

In the code above, the closure signature gets in the way of the important part: the switch
statement. This switch statement focuses on processing two different notifications
emitted by the store:

1. .mutation notifications

2. .reload notifications

The Store.Notiĩcation.mutation notifications are set mutations describing items added,
deleted, or updated from the dictionary of items in the store. We filter these to only
include mutations for children of the folder we’re watching. These filtered set mutations
are forwarded to the next transformation without change.

When we receive the Store.Notiĩcation.reload notification (which is also sent when the
notification is nil, which happens when ĩlteredSignal is first called), we get the full set of
children for the folder directly from the store, and we emit them wrapped in a
SetMutation.reload.

After the processing stage created by ĩlteredSignal, the signal is a stream of set
mutations. For presentation in folder views, we want a stream of sorted array mutations,
so the result is passed through another transformation stage, sortedArrayMutation,
which performs that work. The resulting signal will communicate, among other changes,
the removal of items from the folder contents.

Step 5: Value Bindings TransformModel Adapter Events into Presentation Values

The sequence of emitted array mutations above drives the folder’s table view. In the
definition of our table view, we use the folder’s content signal and bind it to the table’s
data:

.view -- TableView<Item>(

// ...

.tableData <-- store.folderContentsSignal(folder.uuid).tableData(),

// ...

)

The binding for tableData takes the array mutations in the signal and transforms them
into table row mutations by calling .tableData(). When the signal emits a remove
notification, it is turned into a remove mutation for the corresponding table row.

Step 6: Binder Applies Changes to the View

This step is done internally by the framework (in the implementation of the view binder)
in the TableView.Storage.applyTableRowMutation function.

Each table row mutation value received through the binding is applied to the internally
cached table data, and the kind and animation of the mutation are inspected and used to
animate the table appropriately. In this case, deleteRows(at:with:)will be called with an
.automatic animation effect.

Changing the View State

In this section, we’ll look at the steps to change view state in MAVB, using the same two
examples as in the other chapters: updating the play button’s title, and pushing a new
folder view controller.

Changing view state follows the same six steps we’ve shown for model changes above.
The difference is that we’re now working with view state adapters instead of model
adapters:

View

View Binder

View State Adapter

View State

1

2

3 4

5

6Sends an action Changes the view

Action binding transforms
the view action into a

model action

Value binding transforms
the model data into
presentation values

Changes the view state Observes the view state

A view state adapter works just like a model adapter, except that it wraps a view state
value instead of a model object.

Example 1: Updating the Play Button

When the user taps the play button, it should toggle its title between playing and paused.
In MAVB, this involves two cycles through the same six steps. The first cycle changes the
audio player, and the second cycle changes the button.

Step 1a: The Button Tap Is Delivered to the View Binder

This step is performed by the CwlViews framework. Internally, if any actions are
configured on a control (e.g. a button), a SignalControlEventActionTarget object will be
constructed and configured as the target for the control’s action in the
Control.Preparer.applyBinding function. The object gives us a signal that emits events
when the action is triggered.

Step 2a: The Primary Action Is Transformed into a View State Action

Within the action binding, we ignore the event and instead construct a .togglePlay
message:

return Button(recordingsAppButtonBindings:
// ...

.action(.primaryActionTriggered) --> Input()

.map { _ in .togglePlay }

.bind(to: play.mediaControl)

)

Step 3a: The View State Adapter Updates theMedia Control View State

We bind the .togglePlaymessage to the play.mediaControl, which is a non-persistent
view state adapter for controlling the play state:

struct PlayState: StateContainer {
// ...

letmediaControl = TempVar<PlayerRecorderControl>()
// ...

}

In MAVB, a view state adapter emits snapshots of its current value. In the code above,
themediaControl property is a view state adapter, and it emits values that are of type
PlayerRecording. It is important to note that PlayState itself isn’t a view state adapter.
Instead, it is the latest value of its parent view state adapter, the playState property
below:

struct SplitState: StateContainer {
// ...

let playState: Var<PlayState?>
// ...

}

Both PlayState and SplitState conform to the StateContainer protocol, which provides
support for serialization and debug logging. Also note that all properties of these view
state values are defined using let; the only mutable parts are the view state adapters
themselves.

Step 4a: TheMedia Control View State Change Is Observed by the Adapter

When we set the media control value using the binding .bind(to: play.mediaControl), this
sends the value to the TempVar view state adapter via its input binding, which
immediately emits the value to its output bindings. This reemitting work is handled
internally by the TempVar implementation.

Step 5a: The Binding Transforms theMedia Control Signal

In the second parameter to the audio player, we use the output signal from the TempVar:

AudioPlayer(

url: play.url,

input: play.mediaControl

.mergeWith(AudioSession.shared.isActive.map { .audioSessionActive($0) })

// ...

)

)

Step 6a: TheMedia Control Is Applied to the View (AudioPlayer)

The AudioPlayer a regular class that takes bindings as input parameters and exposes only
the Cancellable protocol. This makes it a de facto view binder. It might be strange to
consider an audio player a view, but in MAVB, services — along with everything else
outside the model — are represented as view binders.

We’ve gone through the six steps in the “Changing the View State” diagram and we’ve
reached a view. However, it’s not yet the button we wanted to update. To update the
button label, we have to go through all six steps again.

Step 1b: The Change in Media State Is Delivered to the View Binder

Internally, the AudioPlayer class uses an AVAudioPlayerDelegate to observe the
underlying AVAudioPlayer and detects the change in playback state, delivering that
change in state to its output binding.

Step 2b: Action Bindings Transform View Actions into Model Actions

While the AudioPlayer output is multicast (sent to multiple destinations), we’re
interested in the play.mediaState destination. Since the AudioPlayer output and the
play.mediaState destination contain the same type, we can use bindwithout a
transformation:

AudioPlayer(

// ...

output: Input().multicast(

Input()

.ignoreElements()

.catchError { _ in .just(nil) }

.bind(to: split.playState),

Input().bind(to: play.mediaState)

)

)

Step 3b: The View State Adapter Updates theMedia State

Because the media state is a Var, it immediately sets any received values:

struct PlayState: StateContainer {
// ...

letmediaState: Var<PlayerRecorderState>
// ...

}

Step 4b: TheMedia State Change Is Observed by the Adapter

A Var automatically emits any new values to its output bindings.

Step 5b: The Binding Transforms the PlayState’s Signal

The Button has a title binding, which transforms the media state into a string and then
wraps that string. The .normalwrapper tells the button that this string is the title for the
.normal control state (as opposed to .highlighted, .selected, etc.):

return Button(recordingsAppButtonBindings:
.title <-- play.mediaState.map { ps in
.normal(ps.active ? .pauseLabel : .playLabel)

},

// ...

)

Step 6b: The View Binder Changes the Button’s Label

This step is performed internally by the CwlViews framework. In
Button.Preparer.applyBinding, if a .title binding is provided, it is observed, and setTitle is
called on the Buttonwhen an observed value is received.

Example 2: Pushing a Folder View Controller

When the user taps on a folder row inside another folder’s table view, the selected folder
should be presented in a new view controller.

Step 1: The Table View Selection Action Is Delivered to the View Binder

This step is performed internally by the CwlViews framework. If a row selection action is
configured on a table view, an instance of TableView.Delegatewill be constructed and set
as the table’s delegate. When this delegate receives tableView(_:didSelectRowAt:), it will
send a TableRow description to the input of the configured binding.

Step 2: Action Bindings Transform View Actions into Model Actions

The .didSelectRow binding specifies folder.selection as its binding argument, so this
argument will receive a value when the tableView(_:didSelectRowAt:) delegate method is
invoked:

.view -- TableView<Item>(

// ...

.didSelectRow --> folder.selection,

// ...

)

There is nomap or other transformation specified in the binding argument; the selection
property is used directly. This is possible because the view binder emits a
TableRow<Item> value and the selection property is a TempVarwith TableRow<Item> as
its value type:

struct FolderState: StateContainer {
// ..

let selection = TempVar<TableRow<Item>>()
// ...

}

Step 3: TheModel Adapter Applies the Action to the View State

The folder.selectionmodel adapter is an instance of TempVar. A TempVar can be set from
the outside and can be observed, but it is not persisted. When the TempVar receives a
new value via its input, it sets its state to the new value.

Steps 4 & 5: The Action Is Translated into a Notiĩcation on the Adapter

When a TempVar receives a new value, it immediately emits the new value as a
notification on its output signal. A compactMap transformation is used to get the folder
described by the folder.selection output signal and emits this folder only when it is
non-nil. The resulting folder is transformed to a FolderState describing the next folder
view to push onto the navigation state. The result of this transformation is bound to the
pushInput of the split view’s navigation stack:

.view -- TableView<Item>(

// ...

.cancelOnClose -- [

folder.selection

.compactMap { row in row.data?.folder }

.map { folder in FolderState(folderUuid: folder.uuid) }

.cancellableBind(to: split.navStack.pushInput),

// ...

]

)

We use cancelOnClose together with cancellableBind to make sure the signal goes away
when the table view goes away (breaking any reference cycle that the binding between
the two model adapters might create).

Step 6: The NavigationController Pushes the New Folder View

The primary view of the split view controller contains the master navigation controller.
The navigation controller specifies a stack parameter, which is bound to the navigation
stack of the split state. The navigation stack contains the folder states, which are each
transformed into folder view controllers using the folderView function:

private func primaryView(_ split: SplitState, _ store: StoreAdapter)
-> NavigationControllerConvertible

{

return NavigationController(
.navigationBar -- navBarStyles(),

.stack <-- split.navStack.stackMap { return folderView($0, split, store) },

.poppedToCount --> split.navStack.poppedToCount

)

}

The task of the stackMapmethod on the right-hand side of the binding is to transform
the folder view controllers into a signal that sends stack mutations, such as push and
pop. The stack mutations in the binding above are interpreted by the navigation
controller’s view binder. These are then translated into pushes and pops on the
underlying navigation controller.

Testing

Integration Tests in MAVB

With MVC, we tested the view controller and the views simultaneously using integration
tests. This type of testing is thorough but difficult to write (since it requires full
knowledge of the program, app, and view frameworks), and fragile (since any change
anywhere may break the test), but it can be used with any pattern.

If we wanted, we could use MVC-style integration tests in MAVB by converting the view
binders to their underlying UIKit objects and testing the UIKit objects in the same way.
However, the complex and fragile nature of such tests makes them undesirable unless
there’s a specific integration task we want to cover.

Interface Tests in MAVB

With MVVM, we tested the view-models using interface tests. Interface tests are simpler
than integration tests because our tests can connect custom observers to the observables
on the view-model interface rather than binding the view-model to the views. This
removes the need to construct and manage views during our tests and simplifies the
work involved.

We prefer interface tests like those from MVVM over integration tests like those from
MVC. However, the MAVB pattern mandates that the only exposed interfaces are the
model adapter interfaces (including the view state interfaces). We can always test the
model via its interface — this is true for any pattern in this book — but what we really
want to test is the application logic (the logic between the model and the views). In our
sample app, the view state interfaces don’t encapsulate significant view logic; view state
is predominantly a series of settable values driven by view logic embedded into bindings
within the view constructors, e.g.:

struct PlayState {
letmediaState: Var<MediaState>

}

func constructLabel(_ play: PlayState) {
return Label(.text <-- playState.mediaState.map { timeString($0.progress) })

}

To make more of the application logic testable, we could refactor these transformations
and encapsulate them into the model adapters:

struct PlayState {
letmediaState: Var<MediaState>
var labelText: Signal<String> {
returnmediaState.map { state in timeString(state.progress) }

}

}

func constructLabel(_ play: PlayState) {
return Label(.text <-- playState. labelText)

}

Now the transformations have become part of our interface, and they can be tested
using interface tests, just like MVVM.

A Unique Approach

The reality is that manually shifting our transformation logic into view state interfaces
to create a testable interface isn’t necessary in MAVB, because there is already a testable
layer that doesn’t need to be manually created: the view binders.

A view binder is a list of bindings (values, signals, signal inputs, and functions) in an
array. We can unpack this array, inspect its contents, and use the bindings we find as the
testable interface. The consumeBindings function is used to unpack the bindings from a
binder. As the name implies, once bindings are consumed, the binder can no longer be
used to create an actual instance. Similarly though, once an instance is created from a
binder, we can no longer consume the bindings, so this kind of testing needs to be
performed before objects are inserted into the active view or view controller hierarchy.

As with any interface test, we’ll need to construct some input parameters to drive our
tests. In the code below, we construct a sample Store:

func constructTestingStore() -> StoreAdapter {
let store = Store(relativePath: "store.json", items: [
Item(Folder(name: "Recordings", uuid: Store.rootFolderUuid,

parentUuid: nil, childUuids: [uuid1, uuid3])),
Item(Folder(name: "Child 1", uuid: uuid1,

parentUuid: Store.rootFolderUuid, childUuids: [uuid2, uuid4])),

Item(Folder(name: "Child 2", uuid: uuid2,

parentUuid: uuid1, childUuids: [])),

Item(Recording(name: "Recording 1", uuid: uuid3,

parentUuid: Store.rootFolderUuid)),

Item(Recording(name: "Recording 2", uuid: uuid4,

parentUuid: uuid1)),

])

return StoreAdapter(store: store)
}

Since testing bindings involves significant construction and traversing through binding
structures, it is helpful to load and traverse the top level of this structure — the
folderView (which returns a ViewControllerConvertible) — in the setUpmethod:

class FolderView: XCTestCase {
var store: StoreAdapter = StoreAdapter(store: Store(relativePath: nil))
var rootFolder: FolderState!
var childFolder: FolderState!
var split: SplitState!
var rootViewController: ViewControllerConvertible!
var childViewController: ViewControllerConvertible!

override func setUp() {
super.setUp()

store = constructTestingStore()

rootFolder = FolderState(folderUuid: Store.rootFolderUuid)

childFolder = FolderState(folderUuid: uuid1)

split = SplitState()

rootViewController = folderView(rootFolder, split, store)

childViewController = folderView(childFolder, split, store)

}

// ...

}

This setup method builds all our parameters and runs the folderView function in two
different ways: passing the root folder, and passing a child folder.

All that remains for each test is to traverse through the bindings down to the desired
property and test its current value:

func testRootFolderNavigationTitle() throws {
let viewControllerBindings =
try ViewController.consumeBindings(from: rootViewController)

let title =

try ViewController.Binding.value(for: .title, in: viewControllerBindings)
XCTAssertEqual(title, "Recordings")

}

In many cases in MAVB, it is sufficient to test a single value since bindings should ensure
observation. However, if you’re interested in testing change logic, you can fetch the
signal representation of the binding argument instead of the current value.

The following example demonstrates testing the name of the child view controller both
before and after a change to the name of the folder in the store:

func testChildFolderNavigationTitle() throws {
let bindings = try ViewController.consumeBindings(from: childViewController)
let childTitle = try ViewController.Binding.signal(for: .title, in: bindings)

var values = [String]()
childTitle.subscribeValuesUntilEnd { values.append($0) }

XCTAssertEqual(values.at(0), "Child 1")

store.input.send(value: .renameItem(uuid: uuid1, newName: "New name"))

XCTAssertEqual(values.at(1), "New name")

}

The final type of common test is testing a callback from a view. A callback occurs via an
action binding. With an action binding, the binding argument will be a signal input. We
can send values to this signal input and verify that the correct model state is changed.

Here’s a test of the “Add folder” button’s behavior. This button must set the text alert
state on the split view (which will drive the presentation of a text alert via the bindings
created on the split view controller):

func testCreateNewFolder() throws {
// Consume from the view controller

let vcBindings = try ViewController.consumeBindings(from: rootViewController)
let item = try ViewController.Binding.value(for: .navigationItem, in: vcBindings)

// Consume from the navigation item

let itemBindings = try NavigationItem.consumeBindings(from: item)
let rightItems = try NavigationItem.Binding.value(for: .rightBarButtonItems,

in: itemBindings)
guard let addItem = rightItems.value.at(1) else { XCTFail(); return }

// Consume from the bar button item

let addBindings = try BarButtonItem.consumeBindings(from: addItem)
let targetAction = try BarButtonItem.Binding.argument(for: .action,
in: addBindings)

guard case .singleTarget(let actionInput) = targetAction
else { XCTFail(); return }

var values = [TextAlertState?]()
split.textAlert.subscribeValuesUntilEnd { values.append($0) }

XCTAssert(values.at(0)?.isNil == true)
actionInput.send(value: ())

XCTAssertEqual(values.at(1)??.parentUuid, Store.rootFolderUuid)

}

The actual test is at the bottom. We check the initial state (there shouldn’t be any text
alert yet), send the action (simulate a button tap), and test the final state (there should
be a text alert with the root folder as the destination folder).

Comparison with View-Model Interface Testing

In most ways, the process of testing bindings consumed from a view binder is similar to
that of testing observables exposed by a view-model, as both are typically concerned
with observing reactive programming streams.

However, view-model interface testing suffers from a potential testing gap: relevant
logic may exist in the view controller — between the view-model and the views — and
evade testing. Logic in the final binding or logic in delegate implementations on the
view controller may affect behavior without being noticed by tests. Additionally, view
construction, layout, and other logic potentially handled at viewDidLoadmay need to be
excluded from the view-model because the view-model is not fully constructed at these
times.

Bindings consumed from a view binder ensure that there is no user code between the
tested bindings and the view. View binders encapsulate all properties of the view,
including constant values and immutable construction-only properties. Since the view

is constructed from the bindings and nothing else, the bindings can be considered a
perfect representation of the view.

Another possibility is to change the architecture of MAVB to resemble MVVM. For
example, we could move the transformations from the bindings into the model adapters
or into a separate layer on top of the model adapters. This would allow us to test the
transformation logic independently of the view binders.

Discussion
There are three primary advantages to MAVB: the clear structure of its declarative
syntax, a unified communication model, and clearly defined connections between
models and views. However, these points are simultaneously responsible for the two
biggest drawbacks: the learning curve associated with the unique, abstract syntax, and
the friction that complex syntax causes with debugging and editing tools.

Declarative Syntax

MAVB uses a declarative syntax to describe views and their bindings. The bindings are a
set of unchangeable rules that concisely describe how specific features of the view
should be constructed and react to changes. In plain UIKit, we would declare the view
and its bindings imperatively, using normal control flow such as method calls. Other
declarative systems we have used in this book are Auto Layout (rules describing layout
of views), reactive programming (rules that describe data pipelines), and TEA.

We chose the declarative syntax for view binders because we think it is easier to read; to
understand how a view is constructed and changed over time, you have to read a single
list of unchangeable bindings. This is different from plain UIKit code, where you
typically have to look through multiple methods that construct and change the view.

Declarative systems can greatly help readability, but they usually come with a steep
learning curve: you have to learn the rules the system provides, you have to learn how
the system interprets the rules, you have to learn how to debug the declarative programs,
and sometimes you have to understand the performance implications of the rules as
well.

Uniĩed Communication

One of the main benefits of MAVB is a unified communication mechanism: all changes
are communicated through reactive programming bindings. In MVC, it is not
uncommon to use a number of different mechanisms — notifications, callbacks, method
calls, delegates, target/action, and KVO — even in a small project.

Having a single communication mechanism helps when reading code and makes it
possible to build reusable abstractions on top of it. It also makes it easier to see how the
data flows through your app.

Relationships betweenModel and View

In MVC, the relationship between the model and the views is loosely defined. You can
read initial state but fail to observe subsequent changes. You can fail to apply changes to
the appropriate views. Even when there isn’t a mistake, following the pipeline through
your code from model to view can be difficult.

In MAVB, the relationship from model to view is clearly defined at the location where
the view is constructed. It is easy to see at a glance what data populates a view or what
effects view actions have on the model. It is much more difficult to read from a model
without observing, and much harder to fail to connect an action correctly to the model.

View-models in MVVM describe a similar model-to-view relationship. But the entire
model-to-view relationship is distributed between the view-model, controller, and
storyboards, so the relationship cannot be inspected as easily.

Drawbacks

Declarative programming can be easier to read than imperative programming, but the
effect is subjective. If you never learn the structure and rules that the system encodes,
then it may remain cryptic. If you strongly prefer imperative programming (writing all
the steps involved for yourself), then you might never prefer declarative programming.

The MAVB pattern described in this chapter relies on two large frameworks: CwlViews
and CwlSignal. Both of these libraries are under active development and should be

considered experimental rather than production ready. The CwlViews library in
particular lacks significant testing in deployed environments.

Even beyond their implementation quality, these libraries present a significant learning
curve. Used to its full extent, CwlViews wraps UIKit. While most properties, actions,
delegate methods, and other behaviors from UIKit have an equivalent in CwlViews, the
relationship is not always one-to-one, so some learning and reorientation is required. To
use CwlViews, you have to make a choice to accept a layer between your own code and
UIKit.

When writing code using the CwlViews syntax, Swift’s error diagnostics are close to
useless. When used correctly, the CwlViews syntax compiles easily and quickly, but
when you make a mistake as simple as a missing comma or an incorrect type or an
incorrect binding operator, Swift will usually highlight the third argument (even if the
mistake is in the twentieth argument) and unhelpfully complain that you’ve forgotten
the “bindings” parameter. Even when you understand Swift’s shortcomings in this
regard, finding the problem might require commenting out code until the problematic
line is found (a binary search).

Due to the use of reactive programming, debugging can be much harder. LLDB is built
for debugging imperative programs, but when debugging reactive programming, the
debugger steps into and out of large numbers of internal reactive programming handler
functions. These internal functions are uninteresting if we’re trying to follow our own
program’s logic. It would be more helpful if the debugger would step between stages in
the reactive pipeline, but that’s not how the built-in debugger works. Instead, we must
carefully manage breakpoints or use other strategies for debugging our code.

UsingMAVBwithMVC

It might not be obvious, since MAVB is quite visually different, but MAVB is
interoperable with MVC. We can replace any view binder with standard Cocoa views or
view controllers or use a view binder to replace a single view or view controller within a
larger MVC application.

As an example, we can replace the record view in the MAVB version of the Recordings
app with an MVC-style view controller subclass. A view controller subclass that accepts
the same parameters as the view binder construction function could replace the record
view constructor like this:

func recordView(_ record: RecordState, _ split: SplitState,
_ store: StoreAdapter) -> ViewControllerConvertible

{

return RecordViewController(record, split, store)
}

This drop-in replacement of a CwlViews ViewController view binder with a Cocoa
UIViewControllerworks because the .modalPresentation binding on the split view that
calls this recordView function will accept any implementation of the
ViewControllerConvertible protocol that both ViewController and UIViewController
implement. The protocol has a single method to get a UIViewController; for
UIViewController, it returns self, and for ViewController, it returns its lazily constructed
underlying instance.

Then we need an implementation of init that captures all of the observables we’ve
passed in:

class RecordViewController: UIViewController {
letmediaControl: TempVar<PlayerRecorderControl>
let store: StoreAdapter
let recorder: AudioRecorder
letmediaState: Signal<PlayerRecorderState>
var endpoint: Cancellable?

// View controller initializer takes same parameters as

// view binder construction function

init(_ record: RecordState, _ split: SplitState, _ store: StoreAdapter) {
// ...

}

For view controllers, constructing the view in code should happen in the loadView
method. Following the example of MAVB, we should bind our signal inputs and signals
to the views during this construction (rather than in viewDidLoad or the other
post-construction methods typically used in MVC).

We observe the output of a signal and apply it to the view’s values by using subscribe.
The following example applies the label text to the progress label in the record view:

override func loadView() {

let progressLabel = UILabel()
endpoint = mediaState.subscribeValues {

progressLabel.text = timeString($0.progress)

}

// ...

Implementing actions is a little more verbose, since we need to define a separate method
to receive the action callback:

// ... continued from previous example

let stopButton = UIButton(type: .roundedRect)
stopButton.addTarget(self, action: #selector(stop),
for: .primaryActionTriggered)

// further conĩguration, layout and assembly into a

// single container view omitted ...

self.view = containerView
}

@objc func stop(_ sender: Any?) {
mediaControl.input.send(value: .stop)

store.input.send(value: .recordingComplete)

}

If we would write all our views and view controllers in this way (without using view
binders), the result would be an interesting hybrid of patterns: view state adapters
combined with Cocoa view controllers. It’s like a reactive programming version of
MVC+VS.

Lessons to Be Learned

Composing Views

In UIKit, views are usually combined in a view controller or using a UIView subclass. In
MAVB, we don’t subclass views, but instead compose them out of existing views. To
build reusable components, we can wrap the composed views in a function with the

necessary parameters. For example, here is a function that builds a horizontal row with
the player’s current progress (on the left) and the duration of the recording (on the
right):

func progressRow(_ playState: PlayState) -> Layout.Entity {
return .horizontal(
.matchedPair(

.view(

Label(.text <-- playState.mediaState.map { timeString($0.progress) })

),

.view(Label(

.text <-- playState.mediaState.map { timeString($0.duration) },

.textAlignment -- .right
))

)

)

}

We can also apply the same technique when we don’t use MAVB. When we construct
views in code, it’s easy to build more complicated components by combining existing
view subclasses and wrapping the construction in a function. For example, here’s
similar code that constructs a stack view with the two labels for displaying the
recording’s play progress:

func progressRow(progress: TimeInterval, duration: TimeInterval)
-> UIStackView

{

let progressLabel = UILabel()
progressLabel.text = timeString(progress)

let durationLabel = UILabel()
durationLabel.text = timeString(duration)

durationLabel.textAlignment = .right

let stack = UIStackView(arrangedSubviews: [progressLabel, durationLabel])
stack.axis = .horizontal

return stack
}

For initial construction, the code above works well. However, for changes to the labels, it
doesn’t work well at all: we’d have to find the right subview of the stack view, cast it to a
label, and set the text. In typical UIKit, we would wrap this code up inside a class instead
of a function, because that way, we can expose settable properties for the progress and
duration.

Still, we can reuse the idea from MAVB. For this to work, we need a reactive library. For
example, here’s the same example using RxSwift:

func progressRow(progress: Observable<TimeInterval>,
duration: Observable<TimeInterval>) -> UIStackView

{

let progressLabel = UILabel()
progress.map(timeString).bind(to: progressLabel.rx.text)

.disposed(by: disposeBag)

let durationLabel = UILabel()
duration.map(timeString).bind(to: durationLabel.rx.text)

.disposed(by: disposeBag)

durationLabel.textAlignment = .right

let stack = UIStackView(arrangedSubviews: [progressLabel, durationLabel])
stack.axis = .horizontal

return stack
}

Once a reactive library is available, the technique above is very useful for building
reusable components without subclassing UIView. Out of all the architectures in this
book, it can be used directly with MVVM, MVC+VS, MAVB, and TEA.

Resource Ownership

MVC uses many different approaches to resource ownership, so it’s easier to look at
MVVM, since it uses a very consistent pattern. For example, if we wanted a text binding,
we might write the following:

classMyViewController: UIViewController {
@IBOutlet var textField: UITextField!

let viewModel = ViewModel()
var disposeBag = DisposeBag()

override func viewDidLoad() {
super.viewDidLoad()
viewModel.text.bind(to: textField.rx.text).disposed(by: disposeBag)

}

}

The maintenance of the dispose bag in this example isn’t a huge technical burden — the
pattern involved is simple and repeated enough that it becomes instinctive in MVVM
with RxSwift — but it never stops being syntactic overhead, and there remain cases
where bindings are established between objects with their own dispose bags. In these
cases, ownership can be mismanaged by assigning to the wrong dispose bag.

Let’s look at how CwlViews’ view binders would handle the same text observing:

TextField(

text <-- modelAdapter.text

)

The binding used here internally creates a Cancellable object — equivalent to the
RxSwift disposable — but we don’t see it and it doesn’t require separate handling.

The solution isn’t particularly complex: the binding describes a resource, and the
resource is associated with the text field on construction, so the resource is tied to the
text field (in this case, it’s stored in an associated property using the Objective-C
runtime).

The view binders provided by CwlViews demonstrate an alternative management
arrangement where all resources are tied to their owners at construction. In C++, this
arrangement is called resource acquisition is initialization (RAII). RAII is a clumsy and
confusing name, but the premise is that when we construct a resource — in this case, a
binding — the resource will naturally have a lifetime determined by a parent object (the
view or scene). When the resource is handed to the view or scene, the resource or scene
adopts the lifetime management. RAII is associated with clumsy concepts like scoped
locks — since that’s when the pattern sticks out — but it works best when the lifetime is
tied to an object without us ever knowing.

Transparent lifetime management occurs when we construct the resource as a
parameter during the parent’s constructor or some other call to the owning parent. If the
parent is itself a resource that is constructed as part of a call to its own parent (and that
parent is a resource constructed as part of a call to another parent, and so on), then
resource management is eliminated across the entire hierarchy.

It’s difficult to get a deep hierarchy like this to work transparently in MVC or MVVM
since view controllers have a muddied lifecycle (constructed by storyboards, and then
passed through numerous lifecycle methods like viewDidLoad to finalize construction),
but there are some subtle improvements we can make.

For example, consider the following protocol:

protocol ScopedOwner {
var ownedObjects: [Any] { get set }

}

extension ScopedOwner {
mutating func bind<O: ObservableType, P: ObserverType>(_ observable: O,
to observer: P)where O.E == P.E

{

let disposable = observable.asObservable().bind(to: observer)
ownedObjects.append(disposable)

}

}

This would allow you to rewrite the original MVVM example as the following:

classMyViewController: UIViewController, ScopedOwner {
@IBOutlet var textField: UITextField!
let viewModel = ViewModel()
var ownedObjects: [Any] = []

override func viewDidLoad() {
super.viewDidLoad()
self.bind(viewModel.text, to: textField.rx.text)

}

}

It’s not a huge difference compared to the original example, but we’ve simplified the
binding line and encoded the ownership story into the entire view controller interface,
reducing or eliminating the possibility of ownership mismanagement.

A Declarative View Layer

Instead of the sequentially executed statements or control flows like if and for that
define imperative programming, declarative programming defines structures and rules
— possibly data structures, lists of functions, or other expressions. These structures and
rules are then interpreted by a system that can perform behaviors accordingly.

In the case of the MAVB version of the Recordings app, there are three separate
declarative systems used:

1. View binders describe view behaviors declaratively, and the framework uses
these descriptions to construct, configure, and manage the view hierarchy.

2. Bindings use reactive programming — another declarative system — where you
specify how to transform the signal rather than managing control flow manually.

3. Layout is handled through a syntax that specifies horizontal and vertical
elements within the layout, and then Auto Layout constraints are constructed to
match the description.

Declarative programming is most helpful when the rules are simpler and offer less
opportunity for mistakes than the imperative code that executes the rules. If the rules
are well-chosen, they should make ambiguous, undefined, or otherwise ill-conditioned
states impossible, thereby eliminating bugs by design.

In the MVVM chapter, we already showed how to apply reactive programming to
simplify observing and transformation pipelines in different architectures. Reactive
programming can also be applied in basic MVC, without the use of view-models, to the
same end. TEA shows an alternative declarative approach that implements the observer
pattern without reactive programming.

The layout syntax used in this MAVB application is a standalone single-file library,
CwlLayout.swift. It helps by inferring the four different constraints required for each
object (horizontal placement, vertical placement, horizontal size, and vertical size) by

the arrangement of parameters in the function call, thus reducing the amount of code
required.

The Elm
Architecture

8

The Elm Architecture (TEA) is a radical departure from MVC and other common
architectural patterns on macOS and iOS. In the TEA pattern, each of the application
layers we write is owned and coordinated by a supervising framework (the TEA
framework). Communication between the layers, along with all interaction with UIKit, is
handled by the framework, thereby shielding our code from these responsibilities. The
supervising framework hides UIKit’s usual imperative and object-oriented programming
model, and it enables us to write our application code in a declarative, functional style.

The primary objective of using TEA on iOS is to solve the common problem of keeping
the user interface consistent with the model data and the application’s view state. In
MVC, maintaining this consistency requires that the controller hierarchy handles
numerous lifecycle and state change events (construction, view state changes, model
changes) and carefully applies mutations to existing objects to reflect the total state of
the application. TEA simplifies this diverse set of responsibilities down to a single
pathway: whenever any state in the application changes, the application’s entire state
and model data are passed into a function that constructs a new, immutable, virtual
view hierarchy. Outside of this pathway, there’s no way to update views. This makes it
impossible for the user interface to get out of sync with the state.

In other words: our code doesn’t need to deal with applying the results of particular
events to views. Instead, we describe what the view hierarchy should look like given a
particular state, and the TEA framework ensures the description is followed any time
state changes.

Virtual View

State

Store

Sends a message
Is transformed into
new virtual views

Sends a command
Sends a model
update message

https://guide.elm-lang.org/architecture/

In the diagram above, the app state contains all the information (view state and model
data) needed to render the current user interface. The store is similar to the store of all
other implementations: it takes care of loading data from disk and applying and
persisting changes.

Before we continue, we should be clear about implementation quality: there is no
established, production-ready TEA framework for iOS.

We’ve built our own partial implementation in order to show the Recordings sample app
using this pattern. But while TEA is well tested as a design pattern for web apps using
the Elm language, the iOS implementation of the framework used in this book should be
considered an experimental proof of concept. If you’re interested in using it in a
production app, you will need to be prepared to adapt, extend, and maintain the
framework implementation for yourself. We suggest you try it in a small side project first
to understand what this might entail. Be sure to read the discussion in this chapter to
learn about some of the difficulties to expect along the way.

Despite its experimental nature and the absence of production-ready frameworks, there
are two reasons why we chose to include TEA:

1. TEA works so radically differently from what we’re used to on Apple’s platforms
that it serves to widen our horizons by showing a perspective that’s very different
from traditional object-oriented patterns.

2. Many of the ideas from TEA have inspired other architectures and
implementations; understanding their origins helps us navigate this new
application architecture space. Other patterns used on iOS, such as React Native,
have a significant conceptual overlap with TEA. Even architectures such as MAVB
and MVC+VS take cues from TEA.

Exploring the Implementation
In this section, we’ll take the TEA framework for granted and look at the application
code. Consequently, none of the code described below (except the description of the
startup process) interacts directly with UIKit. Application code only needs to interact
with our own model layer code and the TEA framework. When we talk about view
controllers and views in this section, we’re not talking about instances of
UIViewController and UIView, but rather of their virtual counterparts — structs and

http://facebook.github.io/react-native/

enums in the TEA framework. These structs and enums are pure values: they describe
the view hierarchy, and they are later used to build the actual view hierarchy.

If you’re interested in learning more about what the TEA framework does internally,
please take a look at the section dedicated to this, which you’ll find after the
implementation details.

Construction

In our implementation, the UIApplication instance and its delegate exist outside the TEA
framework, so we’ll use the standard@UIApplicationMain behavior to construct them.
To see the initial constuction, let’s look at the top of the AppDelegate implementation:

@UIApplicationMain
class AppDelegate: UIResponder, UIApplicationDelegate {
// ...

let driver = Driver<AppState, AppState.Message>(
AppState(rootFolder: Store.shared.rootFolder),

update: { state, message in state.update(message) },
view: { state in state.viewController },
subscriptions: { state in state.subscriptions })

// ...

}

The driver constructed here is the exposed interface of the TEA framework. It runs the
core update loop of the application (message — update — render), it owns the model
(the AppState value), and it connects all other parts of the program. This is the only
location where the framework is exposed to the application; after construction, the
remainder of the program executes inside the driver.

The driver takes four parameters:

1. The initial application state (in case of the Recordings app, a value of type
AppState)

2. update— a reducer that updates the state when a new message comes in

3. view— a rendering function that creates the virtual view hierarchy from the app
state

4. subscriptions— a function to get the subscriptions for an app state

The subscriptions parameter is used to dynamically compute the subscriptions when
the app state changes. For example, when we’re in the record state, we want to subscribe
to the record progress. Later in this chapter we’ll discuss subscriptions in more detail.

In application(_:didFinishLaunchingWithOptions:), the root view controller is created by
using the driver’s viewController property (which creates a UIViewController from the
virtual view controller returned by the view parameter, above) and the result is installed
at the base of the view hierarchy:

@UIApplicationMain
class AppDelegate: UIResponder, UIApplicationDelegate {
func application(_ application: UIApplication,
didFinishLaunchingWithOptions launchOptions:

[UIApplicationLaunchOptionsKey: Any]?) -> Bool

{

window = UIWindow(frame: UIScreen.main.bounds)

window?.rootViewController = driver.viewController

window?.makeKeyAndVisible()

window?.backgroundColor = .white

return true
}

}

When the framework constructs UIKit views from virtual views, it sets up callbacks from
the UIKit view objects to the driver. When a UIKit view event happens, the view object
sends the corresponding message to the driver, which then changes the state by passing
the message and the current state to the update function. The framework takes care of
maintaining the view hierarchy for all future updates.

Connecting Views to Initial Data

TEA constructs virtual views from the app’s state. When the state changes, new virtual
views are constructed — there’s no lasting connection. Both state and virtual views are
value types (enums and structs), so they can’t hold references to each other.

Populating the virtual views with their initial data follows the same path that
subsequent updates do. For example, this is how the root view controller is constructed:

extension AppState {
var viewController: ViewController<Message> {
let rootView = SplitViewController<Message>(
left: { _ in self.master },
right: self.detail,
collapseSecondaryViewController: playState == nil,
popDetail: .popDetail)

return .splitViewController(rootView, modal: recordModal)
}

}

The calls to self.master, self.detail, and recordModal construct all of the potential
children of the root view controller as virtual views so that the returned split view
controller contains the entire virtual view tree. The driver will translate these into actual
UIView and UIViewController instances when needed.

As an example of how the child virtual views are created, this is the definition ofmaster:

extension AppState {
varmaster: NavigationController<Message> {
let viewControllers: [NavigationItem<Message>] = folders.map { folder in
let tv: TableView<Message> = folder.tableView(
onSelect: Message.select,

onDelete: Message.delete)

// ...

}

return NavigationController(viewControllers: viewControllers,
back: .back, popDetail: .popDetail)

}

}

The folders property on the app state is used to provide data for the view controllers in
the navigation stack: we map over all folders and construct a table view for each of them.
The method that constructs the table views is defined in an extension on Folder:

extension Folder {

func tableView<Message>(onSelect: (Item) -> Message,
onDelete: (Item) -> Message) -> TableView<Message>

{

return TableView(items: items.map { item in
let text: String
switch item {

case let .folder(folder):
text = " \(folder.name)"

case let .recording(recording):
text = " \(recording.name)"

}

return TableViewCell(identity: AnyHashable(item.uuid),
text: text, onSelect: onSelect(item), onDelete: onDelete(item))

})

}

}

The TableView type expects an array of TableViewCell values. To create the cells, we map
over the folder’s items and turn each one into a table view cell — this is where cell
configuration happens. Back in themaster property where we built the main navigation
controller, we wrapped each table view in a table view controller, and then in a
navigation item (providing the navigation controller with its title, bar buttons, etc.).

The entire virtual view hierarchy is constructed like this: we look at the current app state
and build up the tree of virtual views that represents the state we’re in.

State Restoration

In TEA, state restoration works the same as initial view construction or any other view
update. As soon as the saved app state has been decoded, the driver asks the state for the
virtual view hierarchy and brings it in sync with the actual view hierarchy. The state
restoration hooks in the application delegate are only forwarding the actions to the
driver:

func application(_ application: UIApplication,
willEncodeRestorableStateWith coder: NSCoder) {

driver.encodeRestorableState(coder)

}

func application(_ application: UIApplication,
didDecodeRestorableStateWith coder: NSCoder) {

driver.decodeRestorableState(coder)

}

To make this work, our AppState type must conform to Codable so that the driver knows
how to encode and decode it. The way TEA works, state restoration essentially comes for
free. With the exception of the two delegate methods above, state restoration is
independent of UIKit.

Changing theModel

In TEA, events from the underlying UIKit views are received by the driver as messages.
The driver then passes these messages and the app state as parameters to the update
function (which we configured as { state, message in state.update(message) } in the
driver’s constructor).

Note that the update function does not change the data in the store directly. If it wants
to change the store, it returns a command. A command is a description of an effect that
should be performed — this could be a specific store update or some other task such as a
network request. It’s the driver that interprets these commands by executing them. For
example, it might apply any needed changes to the store. Later in this chapter, we’ll look
at how commands work and why commands are an essential part of TEA.

The store is observed by subscriptions, so when it changes, a message is sent back to the
update function updating the app’s state to reflect the changed store data. From the
changed app state, a new virtual view hierarchy is computed:

Virtual View

State

Store

Is transformed into
new virtual views

1

2 3

4Sends a message

Sends a command
Sends a model
update message

Let’s take a look at how this flow of data applies to the example of deleting an item from
the folder view controller’s table view.

Step 1: View SendsMessage to the UpdateMethod

The views have associated actions, also known asmessages. In the case of a table view
cell, committing a delete action results in a .deletemessage being sent. The .delete
message is defined as part of theMessage enum in the app state:

extension AppState {
enumMessage: Equatable {

case delete(Item)
// ...

}

}

AppState.Message defines all possible messages the Recordings app can send and
handle in a single place.

During setup of the table view, we specify the message that should be sent for deletion:

let tv: TableView<Message> = folder.tableView(
onSelect: Message.select, onDelete: Message.delete)

The second parameter of the method constructing the table view takes a function that
returns the message to be sent when the delete action is triggered. TEA configures the
table view’s data source to automatically send this message. The parameter passed into
the function is the item in the table view.

Step 2: Update Triggers Deletion from the Store

In our application, the updatemethod called by the driver is a mutating method on the
AppState struct. It switches over the message and returns a single command in the
.delete case:

mutating func update(_ msg: Message) -> [Command<Message>] {
switchmsg {
case .delete(let item):
return [Command.delete(item)]

// ...

}

}

The updatemethod is marked asmutating because it can change the AppState. In fact,
it’s the only method that can change the AppState. For the .deletemessage, there’s no
state change, but instead we return a command.

Commands are descriptions of side effects (such as changing data in the store) that are
interpreted by the driver. Executing the .delete command will cause the deleted item to
be removed from the store. The framework provides application-independent
commands, and we added application-specific commands (such as .delete) in an
extension on Command.

Step 3: Update Is Notiĩed about the Store Change

The AppState has a computed property, subscriptions, which describes what effects it
wants to observe at any given time, depending on the current state. At the very least, it
always includes a subscription to the store’s changes:

extension AppState {
var subscriptions: [Subscription<Message>] {
var subs: [Subscription<Message>] = [

.storeChanged(handle: { .storeChanged($0) })

]

// ...

return subs
}

}

This subscription tells the following to the TEA framework: when the content of the
store changes, send a storeChangedmessage to the app state.

When the app state’s updatemethod gets called with a .storeChangedmessage, it
updates the state’s folders array. This array contains the folders that should be on the
navigation stack. Since folders are structs in this code base, we have to fetch their latest
versions from the root folder, which is passed in to the .storeChangedmessage as an
associated value:

mutating func update(_ msg: Message) -> [Command<Message>] {
switchmsg {
// ...

case .storeChanged(let root):
folders = folders.compactMap { root.ĩnd($0) }

// ...

return []
}

}

To refresh the folder values, we map over the existing folders array and fetch the current
values from the new root folder (ĩnd performs a recursive lookup based on the folder’s
UUID). We use compactMap instead ofmap, because one of the folders might no longer
be present, in which case ĩnd returns nil.

Step 4: View Is Computed from the New App State

In the previous step, we changed the app state by setting its folders property. The TEA
framework notices the change of the state and recomputes the entire virtual view
hierarchy. Here we only look at the part that describes the navigation stack with its
folder view controllers:

extension AppState {

varmaster: NavigationController<Message> {
let viewControllers: [NavigationItem<Message>] = folders.map { folder in
let tv: TableView<Message> = folder.tableView(onSelect: Message.select,
onDelete: Message.delete)

return NavigationItem(title: folder.name,
// ...

viewController: .tableViewController(tv))

}

return NavigationController(viewControllers: viewControllers,
back: .back, popDetail: .popDetail)

}

In the first line of themaster property, the virtual view controllers are generated by
mapping over the state’s folders array. Within the map body, the virtual table view for
each folder is generated by the following extension on Folder:

extension Folder {
func tableView<Message>(onSelect: (Item) -> Message,
onDelete: (Item) -> Message) -> TableView<Message>

{

return TableView(items: items.map { item in
let text: String
switch item {

case let .folder(folder):
text = " \(folder.name)"

case let .recording(recording):
text = " \(recording.name)"

}

return TableViewCell(identity: AnyHashable(item.uuid), text: text,
onSelect: onSelect(item), onDelete: onDelete(item))

})

}

}

Note that all views and view controllers generated in this code are virtual; they are
structs and enums describing certain types of views and view controllers and not their
actual UIKit counterparts. The driver takes this virtual view hierarchy and changes the
existing UIView hierarchy. It then changes only what’s different between the two

hierarchies. This diffing step is smart enough to properly animate cell insertions and
deletions.

Changing the View State

In a TEA app, we change the view state by sending a message to update the app’s state
struct, which the driver will follow with a call to generate a new virtual view hierarchy:

Store

Sends a command
Sends a model
update message

Virtual View

State

1 2Sends a message
Is transformed into
new virtual views

We’ll look at the same two examples for view state changes that we use in the other
chapters: updating the play button’s title, and pushing a folder view controller.

Example 1: Updating the Play Button

Step 1: Play Button SendsMessage

In the first step, the app state’s update method receives the message that’s dispatched by
the TEA framework upon tapping the play button. We forward this message to the player
state:

extension AppState {
mutating func update(_ msg: Message) -> [Command<Message>] {
switchmsg {
case .player(letmsg):

return playState?.update(msg) ?? []
// ...

}

}

}

The player state’s update method handles the actual .togglePlaymessage:

extension PlayerState {
mutating func update(_ action: Message) -> [Command<AppState.Message>] {
switch action {
case .togglePlay:
playing = !playing

return [Command.togglePlay(player)]
// ...

}

}

}

We toggle the Boolean playing property and return the .togglePlay command. The driver
then interprets this command and toggles the actual playing of the audio.

Step 2: The New View Hierarchy Is Computed from the State

Since the app’s state has changed, the TEA framework generates a new virtual view
hierarchy from the changed state. This doesn’t just include the changed parts: it’s a new
abstract representation of the entire view/view controller hierarchy, starting from the
root view controller, and continuing all the way down to our play button (and all other
elements that should be onscreen).

Rather than showing the entire view construction, here’s how the play view controller is
computed from the player state. The player state implements a viewController property
that uses an internal view property to generate the player view hierarchy:

extension PlayerState {
var viewController: ViewController<Message> {
return .viewController(view)

}

}

The view property returns a virtual view — a virtual stack view to be precise — that
contains the play button with the correct title:

extension PlayerState {
var view: View<Message> {
// ...

return View<Message>.stackView(views: [
.stackView(views: [

// ...

.space(height: 20),

.button(text: playing ? .pause : .play, onTap: .togglePlay),

]),

.space(width: nil, height: nil)
])

}

}

With this piece of code, we’ve come full circle in our process: when we create the virtual
button view, we also specify the message for tap events: .togglePlay (short for
PlayerState.Message.togglePlay).

Example 2: Pushing a Folder View Controller

In the previous example — changing the title of the play button — we only changed a
property of an existing view in the hierarchy. In this example — pushing a new folder
view controller — we modify both the view and the view controller hierarchy. However,
using the TEA framework, we take exactly the same steps in both examples.

Step 1: The Table View Sends a .selectFolder Message

When we select a folder cell in the table view, the app state’s updatemethod receives a
.selectFoldermessage. The state change in response to this message is simple — we
append the selected folder to the state’s array of folders:

extension AppState {
mutating func update(_ msg: Message) -> [Command<Message>] {
switchmsg {
case let .selectFolder(folder):

folders.append(folder)

return []
// ...

}

}

}

Step 2: The New View Hierarchy Is Computed from the State

As in the previous example, the changed state causes a new view hierarchy to be
computed. In the construction section, we described in more detail how the folder table
view controllers are created.

The Elm Architecture Framework
In the implementation details section from before, we saw examples of TEA code that
work with entities like messages, the app state, virtual views, etc. The only thing these
entities have in common is that they’re completely separate from any concepts known to
UIKit. Things like UIView instances and UIViewController instances, notifications, and
target-action are markedly absent. This is because the TEA framework bridges the gap
between all the usual UIKit constructs and the abstractions used in TEA code.

The central component that ties everything together is the Driver class. The driver owns
the model, syncs up the virtual view hierarchy with UIKit’s view hierarchy, receives view
actions, and executes side effects like persisting data in the store. To understand the
implementation of the framework, we’ll start by examining how virtual views are
rendered into UIView and UIViewController instances.

Virtual Views

In our implementation, virtual views are defined as an enum. Each kind of view is a case
in this enum:

indirect enum View<Message> {

case _label(Label)
case _stackView(StackView<Message>)

// ...

}

The data needed to configure each virtual view is stored as an associated value. Since
most virtual views have a lot of options, we package them up into structs. For example,
the StackView struct looks like this:

struct StackView<Message> {
let views: [View<Message>]
let axis: UILayoutConstraintAxis
let distribution: UIStackViewDistribution
let backgroundColor: UIColor

init(views: [View<Message>],
axis: UILayoutConstraintAxis = .vertical,

distribution: UIStackViewDistribution = .equalCentering,

backgroundColor: UIColor = .white)

{

self.views = views
self.axis = axis
self.distribution = distribution
self.backgroundColor = backgroundColor

}

// ...

}

The virtual views are transformed into UIView instances by a renderer:

struct Renderer<Message> {
// ...

mutating func render(view: View<Message>) -> UIView {
switch view {
case let ._label(label):
let l = UILabel()
render(label, into: l)

return l
case let ._stackView(stackView):
let views = stackView.views.map { render(view: $0) }
let result = UIStackView(arrangedSubviews: views)

render(stackView, into: result)

return result
// ...

}

}

// ...

}

For a label, the renderer creates a UILabel instance and configures it with the payload
data of the ._label case. For a stack view, we first recursively render all its children and
then configure the stack view with its arranged subviews and any other options like
spacing and layout direction.

To avoid replacing the entire view and view controller hierarchy with each change, the
framework makes an effort to reuse existing views on subsequent updates. For example,
the update code for a label looks like this:

// Renderer

mutating func update(view: View<Message>, into existing: UIView) -> UIView {
switch view {
case let ._label(label):
guard let l = existing as? UILabel else {
return render(view: view)

}

render(label, into: l)

return l
// ...

}

}

Only if no UILabel instance exists do we create a new one. Otherwise, we reuse the
existing label and just update its properties in the render(_:into:)method:

// Renderer

private func render(_ label: Label, into l: UILabel) {
l.setContentHuggingPriority(UILayoutPriority.defaultHigh, for: .horizontal)
l.text = label.text

l.font = label.font

l.textAlignment = .center

}

Dispatching View Actions

To see how the TEA framework delivers messages to the app state’s update method in
response to view actions, we start by examining how views are created and follow the
event flow from there. For example, the play button in the Recordings project is defined
as follows:

return View<Message>.stackView(views: [
.stackView(views: [

// ...

.button(text: playing ? .pause : .play, onTap: .togglePlay),

]),

// ...

])

When we create the virtual button, the second parameter specifies which message
should be sent in response to a tap. The renderer uses this information when it creates
the actual UIButton instance for the virtual button:

// Renderer

private mutating func render(_ button: Button<Message>, into b: UIButton) {
b.removeTarget(nil, action: nil, for: .touchUpInside)
if let action = button.onTap {
let cb = self.callback
let target = TargetAction { cb(action) }
strongReferences.append(target)

b.addTarget(target, action: #selector(TargetAction.performAction(sender:)),

for: .touchUpInside)
}

// ...

}

Using UIKit’s standard target-action mechanism, we install an internal TargetAction
object as the receiver for tap events from the UIButton. The purpose of the TargetAction
class is to translate target-action events into messages and forward them to a callback

function. All views use the same callback function for all events. This function is passed
into the render methods by the driver — for example, during initialization:

ĩnal class Driver<Model, Message>whereModel: Codable {
init(_ initial: Model,
update: @escaping (inoutModel, Message) -> [Command<Message>],
view: @escaping (Model) -> ViewController<Message>,

subscriptions: @escaping (Model) -> [Subscription<Message>],

initialCommands: [Command<Message>] = [])

{

// ...

strongReferences = view(model)

.render(callback: self.asyncSend, change: &viewController)
// ...

}

// ...

}

The asyncSendmethod, used as the callback for the renderer, switches to the main
queue and invokes the runmethod:

// Driver

func asyncSend(action: Message) {
DispatchQueue.main.async { [unowned self] in
self.run(action: action)

}

}

func run(action: Message) {
assert(Thread.current.isMainThread)

let commands = updateState(&model, action)
// ...

}

This is the place where the driver passes the message to the app state. The updateState
function the driver calls here is the update function we passed to the driver at
initialization.

All view actions are handled like this. Other UIControl instances work in the same way as
the button example shown above. Likewise, delegate-based views such as table views are

configured with an internal delegate object that converts table view actions into
messages sent to the callback function passed in by the driver.

Handling Commands

The final aspect of the TEA framework we’ll look at is how it executes the commands
returned from the update method. In our current implementation, we have app-specific
commands (such as deleting an item from the store) and app-independent commands
(such as making a network request).

As an example, we’ll walk through the case of deleting an item from the table view in
which the app state’s update method returns a .delete command:

// AppState

mutating func update(_ msg: Message) -> [Command<Message>] {
switchmsg {
case .delete(let item):
return [Command.delete(item)]

// ...

}

}

The driver picks up the commands returned from the update method:

// Driver

func run(action: Message) {
assert(Thread.current.isMainThread)

let commands = updateState(&model, action)
refresh()

for command in commands {
interpret(command: command)

}

}

func interpret(command: Command<Message>) {
command.run(Context(viewController: viewController, send: self.asyncSend))

}

The context that’s passed into the command’s run method provides access to the app’s
root view controller (e.g. to present a modal alert) and a callback, which can be used to
send messages back to the app state once the command has executed.

The implementation of the .delete command simply calls delete on the store:

extension Command {
// ...

static func delete(_ item: Item) -> Command {
return Command { _ in
Store.shared.delete(item)

}

}

}

The .delete command doesn’t make use of the context it gets passed in, but some other
commands do. For example, a command that executes a network request would send
back a message with the received data once the request has completed:

extension Command {
// ...

static func request(_ request: URLRequest,
available: @escaping (Data?) -> Message) -> Command

{

return Command { context in
URLSession.shared.dataTask(with: request) {

(data: Data?, response: URLResponse?, error) in
context.send(available(data))

}.resume()

}

}

}

As we’ve seen, there’s no magic to the TEA framework. The driver is a simple class, and
the implementation of commands is straightforward as well. The most work resides in
creating the virtual views and writing the render and update methods for all of them.
These can become quite complex, especially when animated updates are involved, as is
the case for the table view.

Testing
The key difficulty in application testing is often to find a clean, contained interface that
encloses the logic we want to test. Finding these clean interfaces in TEA is surprisingly
simple — they’re all shown when we construct the driver in the application delegate:

@UIApplicationMain
class AppDelegate: UIResponder, UIApplicationDelegate {
// ...

let driver = Driver<AppState, AppState.Message>(
AppState(rootFolder: Store.shared.rootFolder),

update: { state, message in state.update(message) },
view: { state in state.viewController },
subscriptions: { state in state.subscriptions })

// ...

}

The AppState offers the three critical interfaces — used in the closures in this code
sample — that we need for testing:

1. Rendering virtual views (provided by the top-level viewController computed
property)

2. Performing changes (handled exclusively through the updatemethod)

3. Observing external effects (described by the subscriptions computed property)

Tests in TEA use just one of these functions combined with the AppState to test a narrow
slice of application functionality. For example, given a root folder with two items, we can
test that a table view controller is built and that the table view contains two items as well.
The test starts with the viewController property on AppState and walks through the
virtual view hierarchy, down to the relevant tier. Finally, it asserts that the properties
have the expected values. Note that we also test that the correct messages will be sent
upon cell selection:

func testFolderListing() {
// Construct the AppState

let vc = AppState(rootFolder: constructTestFolder()).viewController

// Traverse and check hierarchy

guard case .splitViewController(let svc, _) = vc else { XCTFail(); return }
let navController = svc.left(nil)
let navItem = navController.viewControllers[0]

XCTAssertEqual(navItem.title, "Recordings")

guard case .tableViewController(let view) = navItem.viewController
else { XCTFail(); return }

// Check structure

XCTAssertEqual(view.items.count, 2)

XCTAssertEqual(view.items[0].text, " Child 1")

XCTAssertEqual(view.items[0].onSelect, .selectFolder(folder1))

XCTAssertEqual(view.items[1].text, " Recording 1")

XCTAssertEqual(view.items[1].onSelect, .selectRecording(recording1))

}

The structure of the test above is similar to the testTableData() test in the MAVB
implementation. While view binders and virtual views have very different
implementations, they are both abstractions over the real views, and the similarity of
the tests reflects that.

To test folder selection, we don’t need to render the virtual view hierarchy. After all, in
the previous test, we already verified that the .selectFoldermessage is correctly set for
the folder cell. Instead, we start with a known state, call the update method with the
.selectFoldermessage, and verify that the state has changed accordingly:

func testFolderSelection() {
// Construct the AppState

var appState = AppState(rootFolder: constructTestFolder())

// Test initial conditions

XCTAssertEqual(appState.folders.map { $0.uuid }, [rootUuid])

// Push a new folder

let commands = appState.update(
.selectFolder(Folder(name: "Child 1", uuid: uuid1, items: [])))

// Test results

https://github.com/objcio/app-architecture/blob/master/Recordings-MAVB/RecordingsTests/FolderViewTests.swift
https://github.com/objcio/app-architecture/blob/master/Recordings-MAVB/RecordingsTests/FolderViewTests.swift

XCTAssert(commands.isEmpty)

XCTAssertEqual(appState.folders.map { $0.uuid }, [rootUuid, uuid1])

}

Navigation tests in MVC and MVVM are notoriously difficult since there is no simple
interface in these architectures that encapsulates the navigation state. In the code
above, we split the test into two parts: in one test, we verified that the correct view
hierarchy is rendered for a given state, and in a separate test, we verified that the state
changes correctly for a given message. We don’t need to test that the view hierarchy has
changed, as this is taken care of by the framework. We also don’t need to test that
components are connected correctly; this is also done by the framework.

The test above shows a structure similar to the testSelectedFolder() in the MVC+VS
implementation. In MVC+VS, however, we had to render the view hierarchy in order to
change the state because we wanted to verify that the view hierarchy and state are
connected. This is not necessary in TEA.

Unlike in other architectural patterns, it’s very easy to test subscriptions in TEA. These
tests work similar to those for the view hierarchy. Below, we verify two things: first, we
ensure that there is a subscription to the store, and second, that the message is a
.reloadFoldermessage. Note thatmessage in the code below is a function that takes a
folder and returns a message:

func testFolderStoreSubscription() {
let appState = AppState(rootFolder: constructTestFolder())
// Test for a store subscription

guard case let .storeChanged(message)? = appState.subscriptions.ĩrst
else { XCTFail(); return }

// Test that the message is a `.reloadFolder`

let updatedFolder = Folder(name: "TestFolderName", uuid: uuid5)
XCTAssertEqual(message(updatedFolder), .storeChanged(updatedFolder))

}

Just as with testing the view hierarchy, testing subscriptions always follows the same
pattern: given a state, call the subscriptionsmethod and verify that the result value is
correct. We don’t need to test that we’re actually subscribed to the Store; the fact that
.storeChangedworks correctly is tested at the framework level. We also don’t need to
verify that the message will get delivered, as the driver takes care of this.

In the three kinds of tests we’ve written thus far (view tests, update tests, and
subscription tests), we did not have to invoke a single framework method or class. This
is typical: in TEA, we write pure functions and test the output values.

Testing Side Effects

In the test for update, we verified that the returned commands array is empty. This array
contains the side effects to be executed. In our implementation of the framework, we
modeled Command as a function so that we can provide built-in commands but be open
for extension as well.

If we want to test that the correct command is returned, we have two different options.
We can execute the command, but that usually takes a lot of setup or is expensive.
Alternatively, we can change the type of our update method to return a protocol. For
example, consider the updatemethod for our RecordState:

extension RecordState {
// ...

mutating func update(_ message: Message) -> [Command<Message>] {
switchmessage {
// ...

case let .save(name: name):
guard let name = name, !name.isEmpty else {
// show that we can't save...

return []
}

return [Command.saveRecording(name: name, folder: folder,
url: recorder.url)]

// ...

}

}

}

In this method, we use three different commands. To make the commands testable, we
start by grouping them in a protocol (we’re only showing a single command for the sake
of brevity):

protocol CommandProtocol {

associatedtypeMessage
// ...

static func saveRecording(name: String, folder: Folder, url: URL) -> Self
}

Because the definitions of the methods match our Command struct exactly, we can make
Command conform without doing any extra work:

extension Command: CommandProtocol { }

Finally, we can change the type of our updatemethod to return an array of Cs, where C
conforms to the new protocol. When we use update to configure our driver, the compiler
will infer that C should be equal to Command:

extension RecordState {
// ...

mutating func update<C>(_ message: Message) -> [C]
where C: CommandProtocol, C.Message ==Message {
switchmessage {
// ...

case let .save(name: name):
guard let name = name, !name.isEmpty else {
// show that we can't save...

return []
}

return [C.saveRecording(name: name, folder: folder, url: recorder.url)]
// ...

}

}

}

For testing, we can create an enum that also conforms to CommandProtocol. The
definition is mechanical: for each static method in the protocol, we define a single case.
For the sake of brevity, we left out the protocol method implementations, which
construct and return the cases below:

enum CommandEnum<Message>: CommandProtocol {

// ...

case _saveRecording(name: String, folder: Folder, url: URL)

// ...

}

In our test, we now enforce that the result type is a CommandEnum, and this is all we
need to instruct the compiler to return the correct type. Below, we combine two tests
into one: first, we check that when we call savewithout a name value (because the user
didn’t enter any text in the modal dialog), we don’t get any commands returned. Then
we check that if we do provide a value, we get a command to save the recording into the
store and persist it to disk:

func testCommands() {
var state = RecordState(folder: folder1, recorder: sampleRecorder)

let commands: [CommandEnum<RecordState.Message>] =
state.update(.save(name: nil))

XCTAssert(commands.isEmpty)

let commands1: [CommandEnum<RecordState.Message>] =
state.update(.save(name: "Hello"))

guard case ._saveRecording(name: "Hello",
folder: folder1, url: sampleRecorder.url)? = commands1.ĩrst

else { XCTFail(); return }
}

These kinds of tests become even more useful when dealing with asynchronous
commands — for example, with the request command from the previous section. We
can verify that the correct URL is loaded, and that the response is turned into the correct
message. In a separate test, we can verify that for the given message, the state changes
correctly.

Discussion
The primary benefit of TEA is the absence of a mutable view hierarchy: we describe how
the view hierarchy should look for a given app state, but we don’t have to write any code
to transition from view hierarchy A to view hierarchy B in response to a particular action.
Defining our views in such a declarative way eliminates an entire class of potential bugs.
We’re all familiar with views getting into invalid states — erroneously disabled controls,
popovers that aren’t dismissed, or loading indicators that don’t disappear, to name just a

few examples. TEA’s consistent and easy-to-follow mechanism for view state updates
across all parts of an application alleviates the burden of managing all this state.

The MVC+VS implementation tries to achieve a similar goal by representing all view
state as part of the model layer and strictly using the observer pattern for view state
updates. However, all this is enforced purely by convention: we could mutate the view
hierarchy directly if we wanted to (or if we didn’t know about the pattern used in the
code base). TEA takes this to the next level: as users of the TEA framework, we have no
access to the view hierarchy. The only thing we can do in response to a view or model
action is to describe what the view hierarchy should look like. Unlike MAVB, TEA
doesn’t depend on a reactive programming library.

Similar to how TEA enforces a consistent flow for view updates, it also enforces a
consistent pattern for other side effects. For example, within the app state’s update
method, we can’t execute a network request directly and update the view hierarchy
when it returns. The only way to achieve these is to return a command from the update
method: instead of executing the request ourselves, we provide the driver with a
description of what should happen, and the driver then takes care of executing the
command and sending a message when it’s finished.

However, TEA is not without its drawbacks. One of the problems with implementing a
TEA framework on iOS is that UIKit has not been designed to be used in this way.
Several UIKit components autonomously change their internal state without us being
able to intercept that state change (we’re only being notified after the fact). We described
this problem already in the MVC+VS chapter, and it shows up for TEA as well. Therefore,
the abstraction of UIKit by the TEA framework will always be imperfect.

Another major challenge is how to integrate animations into TEA. When describing the
view hierarchy for the current app state, we don’t have any information about how we
got into this state. However, that’s often crucial information for animations (e.g. an
animation should run in response to a user interaction, but it shouldn’t run if the
current state came about programmatically, let’s say from state restoration).
Furthermore, it’s not immediately obvious how intermediate view states (while
animating from view hierarchy A to view hierarchy B) should be represented in TEA’s
app-state driven model. That’s an unsolved problem at the time of writing, and it would
need further research for us to reach a good solution.

Lessons to Be Learned
One lesson from TEA is that it can be a good idea to model application state explicitly
and to update the entire hierarchy when this state changes. TEA takes it to the extreme
by applying this idea to the entire application, but the same principle can be applied to
certain screens or even to parts of a screen. In the MVC+VS chapter, we talked about a
lightweight implementation of view state, which is essentially the same idea.

Declarative Views

Another lesson is the benefit of setting up our views declaratively. Again, TEA goes all
the way by introducing a virtual view layer for all kinds of views. However, we can use
the same idea and apply it only to those components for which it’s easy to implement
and which are used regularly.

In Swift Talk #07, we demonstrated a technique using enums to define stack views
declaratively. We can start by defining the kinds of elements we want to put into the
stack view, i.e. its arranged subviews:

enum ContentElement {

case label(String)
case button(String, () -> ())

}

We then implement a view property in an extension on ContentElement to create an
actual UIView out of these enum cases:

extension ContentElement {
var view: UIView {
switch self {
case let .label(text):
let label = UILabel()
label.text = text

return label
case let .button(title, callback):
return CallbackButton(title: title, onTap: callback)

}

}

https://talk.objc.io/episodes/S01E07-stack-views-with-enums

}

The CallbackButton class is a wrapper around UIButton that accepts a callback. Please
see the transcript of Swift Talk #07 for the implementation details.

We then use the view property on the content elements to create a convenience
initializer on UIStackView:

extension UIStackView {
convenience init(vertical: [ContentElement]) {
self.init()
translatesAutoresizingMaskIntoConstraints = false
axis = .vertical

spacing = 10

for element in elements {
addArrangedSubview(element.view)

}

}

}

This allows us to quickly set up stack views like so:

let stackView = UIStackView(vertical: [
.label("Name: \(recording.name)"),

.label("Length: \(timeString(recording.duration))"),

.button("Play", { self.audioPlayer.play() }),
])

This currently only works for static content. If we wanted to render different content
elements, we’d have to create a new stack view and swap it in for the old one. For many
use cases, this is not a problem at all. But we could also create a method on UIStackView
that updates the existing arranged subviews with new data from an array of content
elements if the type of all subviews match. Otherwise, it could replace the existing
subviews with new ones.

In combination with the lightweight view state approach outlined in the MVC+VS
chapter, we can approximate TEA’s use of declarative virtual views for small parts of an

https://talk.objc.io/episodes/S01E07-stack-views-with-enums

existing app. We have shown a more complex example of using these techniques in the
Building a Form Library series on Swift Talk.

Describing Side Effects

TEA has an interesting way of dealing with side effects like executing a network request.
Due to how the architecture is set up, there is no way for us to directly perform such a
task from the app state’s update method. Because of this, TEA introduces the concept of
commands: to execute a network request, we return a command describing this request
and leave the actual execution to the driver.

Although we don’t face these kinds of restrictions in a standard MVC code base, the idea
of TEA’s commands is applicable as well: instead of entangling the information about
what should be done with the code that actually performs the task, we strictly separate
the two. This is especially useful for asynchronous tasks: it disentangles the simple,
synchronous parts from the more-difficult-to-test asynchronous code. An example of
this pattern is the technique we used for a tiny networking library in the very first Swift
Talk episode.

The idea is simple: we create a struct that contains all the information needed to make a
network request to a certain endpoint — including the function that can turn the
response data into a useful data type:

struct Resource<A> {
let url: URL
let parse: (Data) -> A?

}

This struct could contain much more information, such as the request type and the
content type. Abstracting network requests like this makes it simple to test our parsing
code: we just have to test if the resource’s parse function returns what we expect for a
given input, and the test for that is synchronous. The asynchronous task of actually
making the request can now be written once:

ĩnal classWebservice {
func load<A>(_ resource: Resource<A>, completion: (A?) -> ()) {
URLSession.shared.dataTask(with: resource.url) { data, _, _ in
let result = data.ĪatMap(resource.parse)

https://talk.objc.io/collections/building-a-form-library
https://talk.objc.io
https://talk.objc.io/episodes/S01E01-tiny-networking-library
https://talk.objc.io/episodes/S01E01-tiny-networking-library

completion(result)

}.resume()

}

}

Although this example lacks many features (good errors, authentication, etc.), the
principle is clear: everything that varies from request to request is pulled into the
resource struct, and the web service’s load method is left with the sole task of interacting
with the networking APIs.

	About This Book
	Introduction
	Application Architecture
	Model and View
	Applications Are a Feedback Loop
	Architectural Technologies
	Application Tasks

	Overview of Application Design Patterns
	Model-View-Controller
	Model-View-ViewModel+Coordinator
	Model-View-Controller+ViewState
	ModelAdapter-ViewBinder
	The Elm Architecture
	Networking
	Patterns Not Covered

	Model-View-Controller
	Exploring the Implementation
	Testing
	Discussion
	Improvements
	Conclusion

	Model-View-ViewModel+Coordinator
	Exploring the Implementation
	Testing
	Discussion
	MVVM with Less Reactive Programming
	Lessons to Be Learned

	Networking
	Networking Challenges
	Controller-Owned Networking
	Model-Owned Networking
	Discussion

	Model-View-Controller+ViewState
	View State as Part of the Model
	Exploring the Implementation
	Testing
	Discussion
	Lessons to Be Learned

	ModelAdapter-ViewBinder
	Exploring the Implementation
	Testing
	Discussion
	Lessons to Be Learned

	The Elm Architecture
	Exploring the Implementation
	The Elm Architecture Framework
	Testing
	Discussion
	Lessons to Be Learned

